Photonic, Low-Friction and Antimicrobial Applications for an Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-04

AUTHORS

J. A. Sekhar, A. S. Mantri, Sabyasachi Saha, R. Balamuralikrishnan, P. Rama Rao

ABSTRACT

The recent discovery of an ancient mirror bronze alloy comprising of nano-quasicrystalline features is pursued further in this article. We have reported new evidence that indicates that two or more types of quasicrystalline phases may be present in the alloy along with hints of a glassy phase. The finding opens the possibilities of various new uses for this alloy. The distribution of the various phases and their morphological patterns that result from the solidification sequence of the alloy are suggestive of unique photonic applications such as optical gratings and optical cloaking. Low-friction applications at a high pair velocity are also possible with this alloy based on the modulus and the surface texture. The wear rate of many quasicrystalline phase containing alloys is low because of their minimal strain-rate softening tendencies. Based on the nano-crystal distribution and compared to known alloys, the use of the alloy is also contemplated for contact-surface antimicrobial uses. We have also reported findings of the possible evidence of an icosahedral structure even after some of the tin is “boiled” away leaving behind a copper-tin-zinc variation of the original alloy. New high-resolution electron microscope lattice imaging microstructures and diffraction patterns of the original mirror alloy have been discussed. A solidification sequence that can preserve the icosahedral features across the atomic stacking scale, the nanometer scale of the crystals and the micrometer scale of cells/dendrites has been proposed. Regardless, there is the difficulty of completely characterizing all phases in this complex mirror alloy by electron microscopy methods alone. X-ray diffraction, fracture surface analysis, thermal transformation analysis, ellipsometric and optical imaging methods are also employed for the characterization. The microstructures are compared with patterns of similar Fibonacci analogs in flowers and petals. More... »

PAGES

2105-2119

References to SciGraph publications

  • 1986-03. Rapid pressurization experiments on a liquid Al–Mn alloy in NATURE
  • 1987-06. Mechanical properties of large quasicrystals in the Al–Cu–Li system in NATURE
  • 2017-09-06. Influence of tribology on global energy consumption, costs and emissions in FRICTION
  • 1992-03. Ancient metal-mirror making in South India in JOM
  • 1986-11. Comparative wear behaviour of aluminium alloys in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 1994-11. Undercooling-Induced macrosegregation in directional solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2014-04-15. Growth mechanism of an icosahedral quasicrystal and solute partitioning in a Mg-rich Mg–Zn–Y alloy in JOURNAL OF MATERIALS RESEARCH
  • 2016-12-08. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory in SCIENTIFIC REPORTS
  • 2011-05-29. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials in NATURE MATERIALS
  • 2000-11. A stable binary quasicrystal in NATURE
  • 1986-11. Large AlCuLi single quasicrystals with triacontahedral solidification morphology in NATURE
  • 2015-07-14. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed in JOM
  • 1999-11. On the indexing and reciprocal space of icosahedral quasicrystal in JOURNAL OF MATERIALS RESEARCH
  • 1974-10. Solidification processing in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2004-05. Structure and mechanical properties of cast quasicrystal-reinforced Mg–Zn–Al–Y base alloys in JOURNAL OF MATERIALS RESEARCH
  • 2016-09-14. Antimicrobial and anticorrosive efficacy of inorganic nanoporous surfaces in CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
  • 2017-11-15. Shock Synthesis of Five-component Icosahedral Quasicrystals in SCIENTIFIC REPORTS
  • 1990-06. The Cu-Sn (Copper-Tin) system in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1986-02. Indexing of icosahedral quasiperiodic crystals in JOURNAL OF MATERIALS RESEARCH
  • 2011-07-07. The description of morphologically stable regimes for steady state solidification based on the maximum entropy production rate postulate in JOURNAL OF MATERIALS SCIENCE
  • 1986-12. Icosahedral and decagonal phase formation in Al-Mn alloys in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1985-10. Microstructure refinement with forced convection in aluminium and superalloys in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12666-018-1535-1

    DOI

    http://dx.doi.org/10.1007/s12666-018-1535-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111100894


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "MHI Inc. Cincinnati, 45215, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.436653.1", 
              "name": [
                "Institute of Texture, Thermodynamics and Design, 45215, Cincinnati, OH, USA", 
                "University of Cincinnati, 45221, Cincinnati, OH, USA", 
                "MHI Inc. Cincinnati, 45215, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sekhar", 
            "givenName": "J. A.", 
            "id": "sg:person.016661564161.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cincinnati, 45221, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "University of Cincinnati, 45221, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mantri", 
            "givenName": "A. S.", 
            "id": "sg:person.013764304672.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
              "id": "http://www.grid.ac/institutes/grid.461581.f", 
              "name": [
                "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saha", 
            "givenName": "Sabyasachi", 
            "id": "sg:person.011044516072.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
              "id": "http://www.grid.ac/institutes/grid.461581.f", 
              "name": [
                "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balamuralikrishnan", 
            "givenName": "R.", 
            "id": "sg:person.014201063521.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500058, Hyderabad, India", 
              "id": "http://www.grid.ac/institutes/grid.466869.3", 
              "name": [
                "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500058, Hyderabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rama Rao", 
            "givenName": "P.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-017-15771-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092621963", 
              "https://doi.org/10.1038/s41598-017-15771-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1999.0566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010567164", 
              "https://doi.org/10.1557/jmr.1999.0566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010990374", 
              "https://doi.org/10.1007/bf02648870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003694778", 
              "https://doi.org/10.1038/nmat3030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1986.0013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033485034", 
              "https://doi.org/10.1557/jmr.1986.0013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2004.0205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019366943", 
              "https://doi.org/10.1557/jmr.2004.0205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-011-5688-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044281134", 
              "https://doi.org/10.1007/s10853-011-5688-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03222791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014101423", 
              "https://doi.org/10.1007/bf03222791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/327609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052508862", 
              "https://doi.org/10.1038/327609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01113760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021649166", 
              "https://doi.org/10.1007/bf01113760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35046202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024900736", 
              "https://doi.org/10.1038/35046202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01742242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009580394", 
              "https://doi.org/10.1007/bf01742242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006122965", 
              "https://doi.org/10.1007/bf02645910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/324048a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020471826", 
              "https://doi.org/10.1038/324048a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03029299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023647357", 
              "https://doi.org/10.1007/bf03029299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2014.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027074931", 
              "https://doi.org/10.1557/jmr.2014.81"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-015-1524-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053260597", 
              "https://doi.org/10.1007/s11837-015-1524-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003405804", 
              "https://doi.org/10.1007/bf02643923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/320153a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022706370", 
              "https://doi.org/10.1038/320153a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40544-017-0183-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091497602", 
              "https://doi.org/10.1007/s40544-017-0183-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10098-016-1272-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041679405", 
              "https://doi.org/10.1007/s10098-016-1272-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep38117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050925507", 
              "https://doi.org/10.1038/srep38117"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-04", 
        "datePublishedReg": "2019-01-04", 
        "description": "The recent discovery of an ancient mirror bronze alloy comprising of nano-quasicrystalline features is pursued further in this article. We have reported new evidence that indicates that two or more types of quasicrystalline phases may be present in the alloy along with hints of a glassy phase. The finding opens the possibilities of various new uses for this alloy. The distribution of the various phases and their morphological patterns that result from the solidification sequence of the alloy are suggestive of unique photonic applications such as optical gratings and optical cloaking. Low-friction applications at a high pair velocity are also possible with this alloy based on the modulus and the surface texture. The wear rate of many quasicrystalline phase containing alloys is low because of their minimal strain-rate softening tendencies. Based on the nano-crystal distribution and compared to known alloys, the use of the alloy is also contemplated for contact-surface antimicrobial uses. We have also reported findings of the possible evidence of an icosahedral structure even after some of the tin is \u201cboiled\u201d away leaving behind a copper-tin-zinc variation of the original alloy. New high-resolution electron microscope lattice imaging microstructures and diffraction patterns of the original mirror alloy have been discussed. A solidification sequence that can preserve the icosahedral features across the atomic stacking scale, the nanometer scale of the crystals and the micrometer scale of cells/dendrites has been proposed. Regardless, there is the difficulty of completely characterizing all phases in this complex mirror alloy by electron microscopy methods alone. X-ray diffraction, fracture surface analysis, thermal transformation analysis, ellipsometric and optical imaging methods are also employed for the characterization. The microstructures are compared with patterns of similar Fibonacci analogs in flowers and petals.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12666-018-1535-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136517", 
            "issn": [
              "0972-2815", 
              "0975-1645"
            ], 
            "name": "Transactions of the Indian Institute of Metals", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "keywords": [
          "solidification sequence", 
          "low friction applications", 
          "fracture surface analysis", 
          "quasicrystalline phase", 
          "electron microscopy methods", 
          "photonic applications", 
          "optical imaging methods", 
          "antimicrobial applications", 
          "optical grating", 
          "nanometer scale", 
          "optical cloaking", 
          "wear rate", 
          "low friction", 
          "original alloy", 
          "cells/dendrites", 
          "ray diffraction", 
          "bronze alloy", 
          "alloy", 
          "micrometer scale", 
          "microscopy methods", 
          "glassy phase", 
          "surface texture", 
          "antimicrobial uses", 
          "microstructure", 
          "diffraction patterns", 
          "surface analysis", 
          "applications", 
          "grating", 
          "transformation analysis", 
          "modulus", 
          "phase", 
          "diffraction", 
          "pair velocity", 
          "zinc variations", 
          "imaging method", 
          "new uses", 
          "tin", 
          "cloaking", 
          "icosahedral structure", 
          "velocity", 
          "method", 
          "characterization", 
          "distribution", 
          "texture", 
          "scale", 
          "comprising", 
          "structure", 
          "crystals", 
          "lattice", 
          "more types", 
          "analysis", 
          "features", 
          "sequence", 
          "variation", 
          "petals", 
          "rate", 
          "possibility", 
          "discovery", 
          "dendrites", 
          "uses", 
          "use", 
          "recent discovery", 
          "types", 
          "patterns", 
          "difficulties", 
          "tendency", 
          "analogues", 
          "flowers", 
          "article", 
          "hints", 
          "morphological patterns", 
          "possible evidence", 
          "findings", 
          "evidence", 
          "new evidence", 
          "ancient mirror bronze alloy comprising", 
          "mirror bronze alloy comprising", 
          "bronze alloy comprising", 
          "alloy comprising", 
          "nano-quasicrystalline features", 
          "unique photonic applications", 
          "high pair velocity", 
          "minimal strain-rate softening tendencies", 
          "strain-rate softening tendencies", 
          "softening tendencies", 
          "nano-crystal distribution", 
          "contact-surface antimicrobial uses", 
          "New high-resolution electron microscope lattice", 
          "high-resolution electron microscope lattice", 
          "electron microscope lattice", 
          "microscope lattice", 
          "original mirror alloy", 
          "mirror alloy", 
          "icosahedral features", 
          "atomic stacking scale", 
          "stacking scale", 
          "complex mirror alloy", 
          "thermal transformation analysis", 
          "similar Fibonacci analogs", 
          "Fibonacci analogs", 
          "Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy", 
          "Icosahedral/Quasicrystalline Nano-composite Bronze Alloy", 
          "Quasicrystalline Nano-composite Bronze Alloy", 
          "Nano-composite Bronze Alloy"
        ], 
        "name": "Photonic, Low-Friction and Antimicrobial Applications for an Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy", 
        "pagination": "2105-2119", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111100894"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12666-018-1535-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12666-018-1535-1", 
          "https://app.dimensions.ai/details/publication/pub.1111100894"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_799.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12666-018-1535-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12666-018-1535-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12666-018-1535-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12666-018-1535-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12666-018-1535-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      22 PREDICATES      150 URIs      120 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12666-018-1535-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N9dcfd46faa7741f1a7a02b45a4a89eff
    4 schema:citation sg:pub.10.1007/bf01113760
    5 sg:pub.10.1007/bf01742242
    6 sg:pub.10.1007/bf02643923
    7 sg:pub.10.1007/bf02645910
    8 sg:pub.10.1007/bf02648870
    9 sg:pub.10.1007/bf03029299
    10 sg:pub.10.1007/bf03222791
    11 sg:pub.10.1007/s10098-016-1272-2
    12 sg:pub.10.1007/s10853-011-5688-0
    13 sg:pub.10.1007/s11837-015-1524-3
    14 sg:pub.10.1007/s40544-017-0183-5
    15 sg:pub.10.1038/320153a0
    16 sg:pub.10.1038/324048a0
    17 sg:pub.10.1038/327609a0
    18 sg:pub.10.1038/35046202
    19 sg:pub.10.1038/nmat3030
    20 sg:pub.10.1038/s41598-017-15771-1
    21 sg:pub.10.1038/srep38117
    22 sg:pub.10.1557/jmr.1986.0013
    23 sg:pub.10.1557/jmr.1999.0566
    24 sg:pub.10.1557/jmr.2004.0205
    25 sg:pub.10.1557/jmr.2014.81
    26 schema:datePublished 2019-01-04
    27 schema:datePublishedReg 2019-01-04
    28 schema:description The recent discovery of an ancient mirror bronze alloy comprising of nano-quasicrystalline features is pursued further in this article. We have reported new evidence that indicates that two or more types of quasicrystalline phases may be present in the alloy along with hints of a glassy phase. The finding opens the possibilities of various new uses for this alloy. The distribution of the various phases and their morphological patterns that result from the solidification sequence of the alloy are suggestive of unique photonic applications such as optical gratings and optical cloaking. Low-friction applications at a high pair velocity are also possible with this alloy based on the modulus and the surface texture. The wear rate of many quasicrystalline phase containing alloys is low because of their minimal strain-rate softening tendencies. Based on the nano-crystal distribution and compared to known alloys, the use of the alloy is also contemplated for contact-surface antimicrobial uses. We have also reported findings of the possible evidence of an icosahedral structure even after some of the tin is “boiled” away leaving behind a copper-tin-zinc variation of the original alloy. New high-resolution electron microscope lattice imaging microstructures and diffraction patterns of the original mirror alloy have been discussed. A solidification sequence that can preserve the icosahedral features across the atomic stacking scale, the nanometer scale of the crystals and the micrometer scale of cells/dendrites has been proposed. Regardless, there is the difficulty of completely characterizing all phases in this complex mirror alloy by electron microscopy methods alone. X-ray diffraction, fracture surface analysis, thermal transformation analysis, ellipsometric and optical imaging methods are also employed for the characterization. The microstructures are compared with patterns of similar Fibonacci analogs in flowers and petals.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N58fa9b3d9d1e4f34b214943a9e773d7b
    33 Nc378f28a036e455f95a8c09fe0935464
    34 sg:journal.1136517
    35 schema:keywords Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy
    36 Fibonacci analogs
    37 Icosahedral/Quasicrystalline Nano-composite Bronze Alloy
    38 Nano-composite Bronze Alloy
    39 New high-resolution electron microscope lattice
    40 Quasicrystalline Nano-composite Bronze Alloy
    41 alloy
    42 alloy comprising
    43 analogues
    44 analysis
    45 ancient mirror bronze alloy comprising
    46 antimicrobial applications
    47 antimicrobial uses
    48 applications
    49 article
    50 atomic stacking scale
    51 bronze alloy
    52 bronze alloy comprising
    53 cells/dendrites
    54 characterization
    55 cloaking
    56 complex mirror alloy
    57 comprising
    58 contact-surface antimicrobial uses
    59 crystals
    60 dendrites
    61 difficulties
    62 diffraction
    63 diffraction patterns
    64 discovery
    65 distribution
    66 electron microscope lattice
    67 electron microscopy methods
    68 evidence
    69 features
    70 findings
    71 flowers
    72 fracture surface analysis
    73 glassy phase
    74 grating
    75 high pair velocity
    76 high-resolution electron microscope lattice
    77 hints
    78 icosahedral features
    79 icosahedral structure
    80 imaging method
    81 lattice
    82 low friction
    83 low friction applications
    84 method
    85 micrometer scale
    86 microscope lattice
    87 microscopy methods
    88 microstructure
    89 minimal strain-rate softening tendencies
    90 mirror alloy
    91 mirror bronze alloy comprising
    92 modulus
    93 more types
    94 morphological patterns
    95 nano-crystal distribution
    96 nano-quasicrystalline features
    97 nanometer scale
    98 new evidence
    99 new uses
    100 optical cloaking
    101 optical grating
    102 optical imaging methods
    103 original alloy
    104 original mirror alloy
    105 pair velocity
    106 patterns
    107 petals
    108 phase
    109 photonic applications
    110 possibility
    111 possible evidence
    112 quasicrystalline phase
    113 rate
    114 ray diffraction
    115 recent discovery
    116 scale
    117 sequence
    118 similar Fibonacci analogs
    119 softening tendencies
    120 solidification sequence
    121 stacking scale
    122 strain-rate softening tendencies
    123 structure
    124 surface analysis
    125 surface texture
    126 tendency
    127 texture
    128 thermal transformation analysis
    129 tin
    130 transformation analysis
    131 types
    132 unique photonic applications
    133 use
    134 uses
    135 variation
    136 velocity
    137 wear rate
    138 zinc variations
    139 schema:name Photonic, Low-Friction and Antimicrobial Applications for an Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy
    140 schema:pagination 2105-2119
    141 schema:productId N852cc3c04a2e4f90b68cc75c17d6313a
    142 N9fe67cb0070947c086f15de1220f2dc8
    143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111100894
    144 https://doi.org/10.1007/s12666-018-1535-1
    145 schema:sdDatePublished 2022-01-01T18:52
    146 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    147 schema:sdPublisher Na584f0d213ff4071bc08ab5944598cc9
    148 schema:url https://doi.org/10.1007/s12666-018-1535-1
    149 sgo:license sg:explorer/license/
    150 sgo:sdDataset articles
    151 rdf:type schema:ScholarlyArticle
    152 N44942e1dc9074feb82a3d45f370a478a rdf:first sg:person.014201063521.24
    153 rdf:rest Ne0e41259f7f34aada777ceea8284f377
    154 N58fa9b3d9d1e4f34b214943a9e773d7b schema:issueNumber 8
    155 rdf:type schema:PublicationIssue
    156 N66ab3a471d2744a69ea1fe5ad3ab3d30 rdf:first sg:person.013764304672.69
    157 rdf:rest N7335dccbd84c43e899efe46b518d5da0
    158 N7335dccbd84c43e899efe46b518d5da0 rdf:first sg:person.011044516072.28
    159 rdf:rest N44942e1dc9074feb82a3d45f370a478a
    160 N852cc3c04a2e4f90b68cc75c17d6313a schema:name dimensions_id
    161 schema:value pub.1111100894
    162 rdf:type schema:PropertyValue
    163 N9dcfd46faa7741f1a7a02b45a4a89eff rdf:first sg:person.016661564161.49
    164 rdf:rest N66ab3a471d2744a69ea1fe5ad3ab3d30
    165 N9fe67cb0070947c086f15de1220f2dc8 schema:name doi
    166 schema:value 10.1007/s12666-018-1535-1
    167 rdf:type schema:PropertyValue
    168 Na584f0d213ff4071bc08ab5944598cc9 schema:name Springer Nature - SN SciGraph project
    169 rdf:type schema:Organization
    170 Nc378f28a036e455f95a8c09fe0935464 schema:volumeNumber 72
    171 rdf:type schema:PublicationVolume
    172 Ne0e41259f7f34aada777ceea8284f377 rdf:first Ne7eed4abf1c64e62a9c6b1c7db8048c4
    173 rdf:rest rdf:nil
    174 Ne7eed4abf1c64e62a9c6b1c7db8048c4 schema:affiliation grid-institutes:grid.466869.3
    175 schema:familyName Rama Rao
    176 schema:givenName P.
    177 rdf:type schema:Person
    178 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Engineering
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Materials Engineering
    183 rdf:type schema:DefinedTerm
    184 sg:journal.1136517 schema:issn 0972-2815
    185 0975-1645
    186 schema:name Transactions of the Indian Institute of Metals
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.011044516072.28 schema:affiliation grid-institutes:grid.461581.f
    190 schema:familyName Saha
    191 schema:givenName Sabyasachi
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28
    193 rdf:type schema:Person
    194 sg:person.013764304672.69 schema:affiliation grid-institutes:grid.24827.3b
    195 schema:familyName Mantri
    196 schema:givenName A. S.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69
    198 rdf:type schema:Person
    199 sg:person.014201063521.24 schema:affiliation grid-institutes:grid.461581.f
    200 schema:familyName Balamuralikrishnan
    201 schema:givenName R.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24
    203 rdf:type schema:Person
    204 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.436653.1
    205 schema:familyName Sekhar
    206 schema:givenName J. A.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
    208 rdf:type schema:Person
    209 sg:pub.10.1007/bf01113760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021649166
    210 https://doi.org/10.1007/bf01113760
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf01742242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009580394
    213 https://doi.org/10.1007/bf01742242
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf02643923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003405804
    216 https://doi.org/10.1007/bf02643923
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf02645910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122965
    219 https://doi.org/10.1007/bf02645910
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf02648870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990374
    222 https://doi.org/10.1007/bf02648870
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/bf03029299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647357
    225 https://doi.org/10.1007/bf03029299
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/bf03222791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014101423
    228 https://doi.org/10.1007/bf03222791
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s10098-016-1272-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041679405
    231 https://doi.org/10.1007/s10098-016-1272-2
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s10853-011-5688-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044281134
    234 https://doi.org/10.1007/s10853-011-5688-0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s11837-015-1524-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053260597
    237 https://doi.org/10.1007/s11837-015-1524-3
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s40544-017-0183-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091497602
    240 https://doi.org/10.1007/s40544-017-0183-5
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/320153a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022706370
    243 https://doi.org/10.1038/320153a0
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/324048a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020471826
    246 https://doi.org/10.1038/324048a0
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/327609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052508862
    249 https://doi.org/10.1038/327609a0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/35046202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024900736
    252 https://doi.org/10.1038/35046202
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nmat3030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003694778
    255 https://doi.org/10.1038/nmat3030
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/s41598-017-15771-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092621963
    258 https://doi.org/10.1038/s41598-017-15771-1
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/srep38117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050925507
    261 https://doi.org/10.1038/srep38117
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1557/jmr.1986.0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033485034
    264 https://doi.org/10.1557/jmr.1986.0013
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1557/jmr.1999.0566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010567164
    267 https://doi.org/10.1557/jmr.1999.0566
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1557/jmr.2004.0205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019366943
    270 https://doi.org/10.1557/jmr.2004.0205
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1557/jmr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027074931
    273 https://doi.org/10.1557/jmr.2014.81
    274 rdf:type schema:CreativeWork
    275 grid-institutes:grid.24827.3b schema:alternateName University of Cincinnati, 45221, Cincinnati, OH, USA
    276 schema:name University of Cincinnati, 45221, Cincinnati, OH, USA
    277 rdf:type schema:Organization
    278 grid-institutes:grid.436653.1 schema:alternateName MHI Inc. Cincinnati, 45215, Cincinnati, OH, USA
    279 schema:name Institute of Texture, Thermodynamics and Design, 45215, Cincinnati, OH, USA
    280 MHI Inc. Cincinnati, 45215, Cincinnati, OH, USA
    281 University of Cincinnati, 45221, Cincinnati, OH, USA
    282 rdf:type schema:Organization
    283 grid-institutes:grid.461581.f schema:alternateName Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
    284 schema:name Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
    285 rdf:type schema:Organization
    286 grid-institutes:grid.466869.3 schema:alternateName International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500058, Hyderabad, India
    287 schema:name International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500058, Hyderabad, India
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...