Effect of Dissolution and Precipitation of Nb on Phase Transformation, Microstructure, and Microhardness of Two High-Nb Pipeline Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-07

AUTHORS

Gui-ying Qiao, Ya-bin Cao, Bo Liao, Fu-ren Xiao

ABSTRACT

Niobium (Nb) as an important microalloying element is widely applied in high strength pipeline steels. In this work, the continuous cooling transformation diagrams of two high-Nb steels with and without hot deformation were studied using a Gleeble 3500 thermal simulator. The amounts of dissolved Nb, undissolved Nb, and precipitated Nb were determined by inductively coupled plasma-atomic emission spectrometry. Results show that the increasing of Nb content in the high-Nb steels can restrain the prior austenite grain growth, dynamic, and/or static recrystallization; moreover, it can suppress polygonal ferrite transformation and promote acicular ferrite and bainite transformation, refining the microstructure and increasing the microhardness as a consequence. Nevertheless, the amplified Nb content in steels escalates trends of strain-induced Nb(C,N) precipitation. The increase in the amount of Nb(C,N) precipitates promote the polygonal ferrite and acicular ferrite transformation, while also decrease the microhardness. The results from this work show that the higher Nb content of 0.13% in the tested steel is unnecessary. More... »

PAGES

627-637

References to SciGraph publications

  • 2012-11-01. Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2015-05-20. Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2010-08-10. Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12666-017-1195-6

    DOI

    http://dx.doi.org/10.1007/s12666-017-1195-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091504500


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Lab of Applied Chemistry of Hebei Provence and School of Environment and Chemical Engineering, Yanshan University, 066004, Qinhuangdao, China", 
              "id": "http://www.grid.ac/institutes/grid.413012.5", 
              "name": [
                "Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China", 
                "Key Lab of Applied Chemistry of Hebei Provence and School of Environment and Chemical Engineering, Yanshan University, 066004, Qinhuangdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qiao", 
            "givenName": "Gui-ying", 
            "id": "sg:person.010527470121.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527470121.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Shijiazhuang Tiedao University, 050043, Shijiazhuang, China", 
              "id": "http://www.grid.ac/institutes/grid.440641.3", 
              "name": [
                "School of Materials Science and Engineering, Shijiazhuang Tiedao University, 050043, Shijiazhuang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Ya-bin", 
            "id": "sg:person.012676420767.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676420767.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China", 
              "id": "http://www.grid.ac/institutes/grid.413012.5", 
              "name": [
                "Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Bo", 
            "id": "sg:person.010636345041.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636345041.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China", 
              "id": "http://www.grid.ac/institutes/grid.413012.5", 
              "name": [
                "Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Fu-ren", 
            "id": "sg:person.014333142565.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333142565.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-010-0376-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008891428", 
              "https://doi.org/10.1007/s11661-010-0376-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(13)60020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017577336", 
              "https://doi.org/10.1016/s1006-706x(13)60020-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2969-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019961233", 
              "https://doi.org/10.1007/s11661-015-2969-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-07", 
        "datePublishedReg": "2017-09-07", 
        "description": "Niobium (Nb) as an important microalloying element is widely applied in high strength pipeline steels. In this work, the continuous cooling transformation diagrams of two high-Nb steels with and without hot deformation were studied using a Gleeble 3500 thermal simulator. The amounts of dissolved Nb, undissolved Nb, and precipitated Nb were determined by inductively coupled plasma-atomic emission spectrometry. Results show that the increasing of Nb content in the high-Nb steels can restrain the prior austenite grain growth, dynamic, and/or static recrystallization; moreover, it can suppress polygonal ferrite transformation and promote acicular ferrite and bainite transformation, refining the microstructure and increasing the microhardness as a consequence. Nevertheless, the amplified Nb content in steels escalates trends of strain-induced Nb(C,N) precipitation. The increase in the amount of Nb(C,N) precipitates promote the polygonal ferrite and acicular ferrite transformation, while also decrease the microhardness. The results from this work show that the higher Nb content of 0.13% in the tested steel is unnecessary.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12666-017-1195-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7015245", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8271886", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136517", 
            "issn": [
              "0972-2815", 
              "0975-1645"
            ], 
            "name": "Transactions of the Indian Institute of Metals", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "71"
          }
        ], 
        "keywords": [
          "Nb steel", 
          "pipeline steel", 
          "Nb content", 
          "ferrite transformation", 
          "high strength pipeline steel", 
          "Gleeble 3500 thermal simulator", 
          "continuous cooling transformation diagram", 
          "polygonal ferrite transformation", 
          "austenite grain growth", 
          "acicular ferrite transformation", 
          "precipitation of Nb", 
          "undissolved Nb", 
          "hot deformation", 
          "polygonal ferrite", 
          "thermal simulator", 
          "acicular ferrite", 
          "microalloying element", 
          "static recrystallization", 
          "high Nb content", 
          "dissolved Nb", 
          "steel", 
          "grain growth", 
          "bainite transformation", 
          "phase transformation", 
          "transformation diagrams", 
          "microhardness", 
          "effect of dissolution", 
          "microstructure", 
          "ferrite", 
          "Nb", 
          "deformation", 
          "recrystallization", 
          "niobium", 
          "precipitates", 
          "increasing", 
          "simulator", 
          "precipitation", 
          "emission spectrometry", 
          "dissolution", 
          "work", 
          "plasma atomic emission spectrometry", 
          "content", 
          "amount", 
          "transformation", 
          "results", 
          "diagram", 
          "elements", 
          "increase", 
          "effect", 
          "growth", 
          "trends", 
          "spectrometry", 
          "consequences"
        ], 
        "name": "Effect of Dissolution and Precipitation of Nb on Phase Transformation, Microstructure, and Microhardness of Two High-Nb Pipeline Steels", 
        "pagination": "627-637", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091504500"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12666-017-1195-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12666-017-1195-6", 
          "https://app.dimensions.ai/details/publication/pub.1091504500"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_751.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12666-017-1195-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1195-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1195-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1195-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1195-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      80 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12666-017-1195-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1953045145c04ebaaacaa54152ba9421
    4 schema:citation sg:pub.10.1007/s11661-010-0376-2
    5 sg:pub.10.1007/s11661-015-2969-2
    6 sg:pub.10.1016/s1006-706x(13)60020-5
    7 schema:datePublished 2017-09-07
    8 schema:datePublishedReg 2017-09-07
    9 schema:description Niobium (Nb) as an important microalloying element is widely applied in high strength pipeline steels. In this work, the continuous cooling transformation diagrams of two high-Nb steels with and without hot deformation were studied using a Gleeble 3500 thermal simulator. The amounts of dissolved Nb, undissolved Nb, and precipitated Nb were determined by inductively coupled plasma-atomic emission spectrometry. Results show that the increasing of Nb content in the high-Nb steels can restrain the prior austenite grain growth, dynamic, and/or static recrystallization; moreover, it can suppress polygonal ferrite transformation and promote acicular ferrite and bainite transformation, refining the microstructure and increasing the microhardness as a consequence. Nevertheless, the amplified Nb content in steels escalates trends of strain-induced Nb(C,N) precipitation. The increase in the amount of Nb(C,N) precipitates promote the polygonal ferrite and acicular ferrite transformation, while also decrease the microhardness. The results from this work show that the higher Nb content of 0.13% in the tested steel is unnecessary.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N42e3d77fe44d4c19919f1d21f3b37b1e
    13 N8ce8713395f34e768e64ee027132ee09
    14 sg:journal.1136517
    15 schema:keywords Gleeble 3500 thermal simulator
    16 Nb
    17 Nb content
    18 Nb steel
    19 acicular ferrite
    20 acicular ferrite transformation
    21 amount
    22 austenite grain growth
    23 bainite transformation
    24 consequences
    25 content
    26 continuous cooling transformation diagram
    27 deformation
    28 diagram
    29 dissolution
    30 dissolved Nb
    31 effect
    32 effect of dissolution
    33 elements
    34 emission spectrometry
    35 ferrite
    36 ferrite transformation
    37 grain growth
    38 growth
    39 high Nb content
    40 high strength pipeline steel
    41 hot deformation
    42 increase
    43 increasing
    44 microalloying element
    45 microhardness
    46 microstructure
    47 niobium
    48 phase transformation
    49 pipeline steel
    50 plasma atomic emission spectrometry
    51 polygonal ferrite
    52 polygonal ferrite transformation
    53 precipitates
    54 precipitation
    55 precipitation of Nb
    56 recrystallization
    57 results
    58 simulator
    59 spectrometry
    60 static recrystallization
    61 steel
    62 thermal simulator
    63 transformation
    64 transformation diagrams
    65 trends
    66 undissolved Nb
    67 work
    68 schema:name Effect of Dissolution and Precipitation of Nb on Phase Transformation, Microstructure, and Microhardness of Two High-Nb Pipeline Steels
    69 schema:pagination 627-637
    70 schema:productId N9f5b4397f9534ccb9d65934a9e4ec82d
    71 Naeba3b6601c940e49440dac2648c420d
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091504500
    73 https://doi.org/10.1007/s12666-017-1195-6
    74 schema:sdDatePublished 2022-12-01T06:37
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N5cfe68a140674149b37d13eb6ead667c
    77 schema:url https://doi.org/10.1007/s12666-017-1195-6
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N1953045145c04ebaaacaa54152ba9421 rdf:first sg:person.010527470121.42
    82 rdf:rest N76d1ddc7735f418694fac8f6a71e87f2
    83 N42e3d77fe44d4c19919f1d21f3b37b1e schema:volumeNumber 71
    84 rdf:type schema:PublicationVolume
    85 N4342a80a52044bf1ae7dc8584ed85bca rdf:first sg:person.010636345041.51
    86 rdf:rest N7ab5974aab57494e849292686eae2b80
    87 N5cfe68a140674149b37d13eb6ead667c schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N76d1ddc7735f418694fac8f6a71e87f2 rdf:first sg:person.012676420767.37
    90 rdf:rest N4342a80a52044bf1ae7dc8584ed85bca
    91 N7ab5974aab57494e849292686eae2b80 rdf:first sg:person.014333142565.17
    92 rdf:rest rdf:nil
    93 N8ce8713395f34e768e64ee027132ee09 schema:issueNumber 3
    94 rdf:type schema:PublicationIssue
    95 N9f5b4397f9534ccb9d65934a9e4ec82d schema:name dimensions_id
    96 schema:value pub.1091504500
    97 rdf:type schema:PropertyValue
    98 Naeba3b6601c940e49440dac2648c420d schema:name doi
    99 schema:value 10.1007/s12666-017-1195-6
    100 rdf:type schema:PropertyValue
    101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Engineering
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Materials Engineering
    106 rdf:type schema:DefinedTerm
    107 sg:grant.7015245 http://pending.schema.org/fundedItem sg:pub.10.1007/s12666-017-1195-6
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.8271886 http://pending.schema.org/fundedItem sg:pub.10.1007/s12666-017-1195-6
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1136517 schema:issn 0972-2815
    112 0975-1645
    113 schema:name Transactions of the Indian Institute of Metals
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010527470121.42 schema:affiliation grid-institutes:grid.413012.5
    117 schema:familyName Qiao
    118 schema:givenName Gui-ying
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527470121.42
    120 rdf:type schema:Person
    121 sg:person.010636345041.51 schema:affiliation grid-institutes:grid.413012.5
    122 schema:familyName Liao
    123 schema:givenName Bo
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636345041.51
    125 rdf:type schema:Person
    126 sg:person.012676420767.37 schema:affiliation grid-institutes:grid.440641.3
    127 schema:familyName Cao
    128 schema:givenName Ya-bin
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676420767.37
    130 rdf:type schema:Person
    131 sg:person.014333142565.17 schema:affiliation grid-institutes:grid.413012.5
    132 schema:familyName Xiao
    133 schema:givenName Fu-ren
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333142565.17
    135 rdf:type schema:Person
    136 sg:pub.10.1007/s11661-010-0376-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008891428
    137 https://doi.org/10.1007/s11661-010-0376-2
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11661-015-2969-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019961233
    140 https://doi.org/10.1007/s11661-015-2969-2
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1016/s1006-706x(13)60020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017577336
    143 https://doi.org/10.1016/s1006-706x(13)60020-5
    144 rdf:type schema:CreativeWork
    145 grid-institutes:grid.413012.5 schema:alternateName Key Lab of Applied Chemistry of Hebei Provence and School of Environment and Chemical Engineering, Yanshan University, 066004, Qinhuangdao, China
    146 Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China
    147 schema:name Key Lab of Applied Chemistry of Hebei Provence and School of Environment and Chemical Engineering, Yanshan University, 066004, Qinhuangdao, China
    148 Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, 066004, Qinhuangdao, China
    149 rdf:type schema:Organization
    150 grid-institutes:grid.440641.3 schema:alternateName School of Materials Science and Engineering, Shijiazhuang Tiedao University, 050043, Shijiazhuang, China
    151 schema:name School of Materials Science and Engineering, Shijiazhuang Tiedao University, 050043, Shijiazhuang, China
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...