Evaluation of Metal–Ceramic Composite Joint Under Tensile Loads at Elevated Temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-25

AUTHORS

Vijay Petley, Shweta Verma, K. Saravanan, M. Stalin, K. Raghavendra, K. Venkateswarlu

ABSTRACT

An experimental study was undertaken to understand the tensile behavior of metal–ceramic composite joint with bolted configuration. Nickel based super alloy (GTM-Su-263) and SiCf/SiC composite were the material systems with an aerospace grade MJ6 bolt of GTM-Su-718. This bolted assembly was pulled at temperatures 25, 600 and 750 °C which were likely to be experienced in a typical aero engine. In case of metal–ceramic composite joint, the net tensile stress decreased from 110 to 88 MPa with increase in temperature from 25 to 600 °C. Similarly, the bearing stress reduced from 146 to 118 MPa. In all the metal–ceramic composite joints, the fracture initiated at the hole edge experienced the maximum tensile stresses. With further increase in temperature, reduction in the net tensile and bearing strength was significant and was attributed to the oxidation of the interface between the fiber and matrix. SEM studies clearly suggested that debonding and fiber pullout resulted in inferior tensile strength properties at elevated temperatures. More... »

PAGES

769-774

References to SciGraph publications

  • 2004-09. Time-dependent deformation in an enhanced SiC/SiC composite in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2006-12. Thermal shock behavior of a three-dimensional SiC/SiC composite in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12666-017-1063-4

    DOI

    http://dx.doi.org/10.1007/s12666-017-1063-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083890863


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.508680.3", 
              "name": [
                "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petley", 
            "givenName": "Vijay", 
            "id": "sg:person.012051410441.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051410441.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.508680.3", 
              "name": [
                "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verma", 
            "givenName": "Shweta", 
            "id": "sg:person.015277271042.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015277271042.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.508680.3", 
              "name": [
                "Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saravanan", 
            "givenName": "K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stalin", 
            "givenName": "M.", 
            "id": "sg:person.015605065315.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605065315.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raghavendra", 
            "givenName": "K.", 
            "id": "sg:person.014377544375.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377544375.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/grid.462641.3", 
              "name": [
                "CSIR-National Aerospace Laboratories, 560 017, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Venkateswarlu", 
            "givenName": "K.", 
            "id": "sg:person.011776234071.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-006-1053-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005412861", 
              "https://doi.org/10.1007/s11661-006-1053-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-004-0233-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028720777", 
              "https://doi.org/10.1007/s11661-004-0233-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-25", 
        "datePublishedReg": "2017-02-25", 
        "description": "An experimental study was undertaken to understand the tensile behavior of metal\u2013ceramic composite joint with bolted configuration. Nickel based super alloy (GTM-Su-263) and SiCf/SiC composite were the material systems with an aerospace grade MJ6 bolt of GTM-Su-718. This bolted assembly was pulled at temperatures 25, 600 and 750\u00a0\u00b0C which were likely to be experienced in a typical aero engine. In case of metal\u2013ceramic composite joint, the net tensile stress decreased from 110 to 88\u00a0MPa with increase in temperature from 25 to 600\u00a0\u00b0C. Similarly, the bearing stress reduced from 146 to 118\u00a0MPa. In all the metal\u2013ceramic composite joints, the fracture initiated at the hole edge experienced the maximum tensile stresses. With further increase in temperature, reduction in the net tensile and bearing strength was significant and was attributed to the oxidation of the interface between the fiber and matrix. SEM studies clearly suggested that debonding and fiber pullout resulted in inferior tensile strength properties at elevated temperatures.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12666-017-1063-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136517", 
            "issn": [
              "0972-2815", 
              "0975-1645"
            ], 
            "name": "Transactions of the Indian Institute of Metals", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "70"
          }
        ], 
        "keywords": [
          "composite joints", 
          "tensile stress", 
          "SiCf/SiC composites", 
          "typical aero engine", 
          "net tensile stress", 
          "maximum tensile stress", 
          "tensile strength properties", 
          "elevated temperatures", 
          "fiber pullout", 
          "super alloy", 
          "SiC composites", 
          "aero engines", 
          "tensile behavior", 
          "bearing stress", 
          "strength properties", 
          "tensile load", 
          "bearing strength", 
          "material system", 
          "hole edge", 
          "MPa", 
          "experimental study", 
          "temperature 25", 
          "SEM studies", 
          "joints", 
          "temperature", 
          "tensile", 
          "composites", 
          "alloy", 
          "pullout", 
          "bolts", 
          "stress", 
          "further increase", 
          "engine", 
          "load", 
          "nickel", 
          "interface", 
          "strength", 
          "fibers", 
          "properties", 
          "configuration", 
          "fractures", 
          "matrix", 
          "behavior", 
          "edge", 
          "increase", 
          "oxidation", 
          "assembly", 
          "system", 
          "reduction", 
          "study", 
          "evaluation", 
          "cases", 
          "metal\u2013ceramic composite joint", 
          "aerospace grade MJ6 bolt", 
          "grade MJ6 bolt", 
          "MJ6 bolt", 
          "GTM-Su-718", 
          "net tensile", 
          "inferior tensile strength properties"
        ], 
        "name": "Evaluation of Metal\u2013Ceramic Composite Joint Under Tensile Loads at Elevated Temperature", 
        "pagination": "769-774", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083890863"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12666-017-1063-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12666-017-1063-4", 
          "https://app.dimensions.ai/details/publication/pub.1083890863"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_755.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12666-017-1063-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1063-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1063-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1063-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12666-017-1063-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      22 PREDICATES      86 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12666-017-1063-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na7363052e7c948a9a052ddbe21d21e25
    4 schema:citation sg:pub.10.1007/s11661-004-0233-2
    5 sg:pub.10.1007/s11661-006-1053-3
    6 schema:datePublished 2017-02-25
    7 schema:datePublishedReg 2017-02-25
    8 schema:description An experimental study was undertaken to understand the tensile behavior of metal–ceramic composite joint with bolted configuration. Nickel based super alloy (GTM-Su-263) and SiCf/SiC composite were the material systems with an aerospace grade MJ6 bolt of GTM-Su-718. This bolted assembly was pulled at temperatures 25, 600 and 750 °C which were likely to be experienced in a typical aero engine. In case of metal–ceramic composite joint, the net tensile stress decreased from 110 to 88 MPa with increase in temperature from 25 to 600 °C. Similarly, the bearing stress reduced from 146 to 118 MPa. In all the metal–ceramic composite joints, the fracture initiated at the hole edge experienced the maximum tensile stresses. With further increase in temperature, reduction in the net tensile and bearing strength was significant and was attributed to the oxidation of the interface between the fiber and matrix. SEM studies clearly suggested that debonding and fiber pullout resulted in inferior tensile strength properties at elevated temperatures.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N59fb7c3c0d96453185d37a3150c67cd5
    13 N7322b88e41be4758879e3c5827c25720
    14 sg:journal.1136517
    15 schema:keywords GTM-Su-718
    16 MJ6 bolt
    17 MPa
    18 SEM studies
    19 SiC composites
    20 SiCf/SiC composites
    21 aero engines
    22 aerospace grade MJ6 bolt
    23 alloy
    24 assembly
    25 bearing strength
    26 bearing stress
    27 behavior
    28 bolts
    29 cases
    30 composite joints
    31 composites
    32 configuration
    33 edge
    34 elevated temperatures
    35 engine
    36 evaluation
    37 experimental study
    38 fiber pullout
    39 fibers
    40 fractures
    41 further increase
    42 grade MJ6 bolt
    43 hole edge
    44 increase
    45 inferior tensile strength properties
    46 interface
    47 joints
    48 load
    49 material system
    50 matrix
    51 maximum tensile stress
    52 metal–ceramic composite joint
    53 net tensile
    54 net tensile stress
    55 nickel
    56 oxidation
    57 properties
    58 pullout
    59 reduction
    60 strength
    61 strength properties
    62 stress
    63 study
    64 super alloy
    65 system
    66 temperature
    67 temperature 25
    68 tensile
    69 tensile behavior
    70 tensile load
    71 tensile strength properties
    72 tensile stress
    73 typical aero engine
    74 schema:name Evaluation of Metal–Ceramic Composite Joint Under Tensile Loads at Elevated Temperature
    75 schema:pagination 769-774
    76 schema:productId N847a9c10fa5d439c9775d061f4cd8687
    77 N8c5b765b75e54b63920759158dd8a0df
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083890863
    79 https://doi.org/10.1007/s12666-017-1063-4
    80 schema:sdDatePublished 2021-11-01T18:32
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N61d8b7832bd2491d8609543532a56ebc
    83 schema:url https://doi.org/10.1007/s12666-017-1063-4
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N3122702dd89d4e938eb04dc5a2689e1a rdf:first sg:person.011776234071.26
    88 rdf:rest rdf:nil
    89 N3cef688cba9940ae9509667fce24c58d rdf:first N52d1a9d9a17f440fbc7330fe90bf4242
    90 rdf:rest Nec4347e59ed74f0ab89f9d88a9c9b163
    91 N52d1a9d9a17f440fbc7330fe90bf4242 schema:affiliation grid-institutes:grid.508680.3
    92 schema:familyName Saravanan
    93 schema:givenName K.
    94 rdf:type schema:Person
    95 N59fb7c3c0d96453185d37a3150c67cd5 schema:volumeNumber 70
    96 rdf:type schema:PublicationVolume
    97 N61d8b7832bd2491d8609543532a56ebc schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N6df499aa81b2427c83773fadf4c1ebfd rdf:first sg:person.015277271042.45
    100 rdf:rest N3cef688cba9940ae9509667fce24c58d
    101 N7322b88e41be4758879e3c5827c25720 schema:issueNumber 3
    102 rdf:type schema:PublicationIssue
    103 N847a9c10fa5d439c9775d061f4cd8687 schema:name dimensions_id
    104 schema:value pub.1083890863
    105 rdf:type schema:PropertyValue
    106 N8c5b765b75e54b63920759158dd8a0df schema:name doi
    107 schema:value 10.1007/s12666-017-1063-4
    108 rdf:type schema:PropertyValue
    109 Na7363052e7c948a9a052ddbe21d21e25 rdf:first sg:person.012051410441.61
    110 rdf:rest N6df499aa81b2427c83773fadf4c1ebfd
    111 Nce6c6c10e18d4778af888edcaf6f5a0f rdf:first sg:person.014377544375.75
    112 rdf:rest N3122702dd89d4e938eb04dc5a2689e1a
    113 Nec4347e59ed74f0ab89f9d88a9c9b163 rdf:first sg:person.015605065315.83
    114 rdf:rest Nce6c6c10e18d4778af888edcaf6f5a0f
    115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Engineering
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Materials Engineering
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1136517 schema:issn 0972-2815
    122 0975-1645
    123 schema:name Transactions of the Indian Institute of Metals
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.011776234071.26 schema:affiliation grid-institutes:grid.462641.3
    127 schema:familyName Venkateswarlu
    128 schema:givenName K.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26
    130 rdf:type schema:Person
    131 sg:person.012051410441.61 schema:affiliation grid-institutes:grid.508680.3
    132 schema:familyName Petley
    133 schema:givenName Vijay
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051410441.61
    135 rdf:type schema:Person
    136 sg:person.014377544375.75 schema:affiliation grid-institutes:grid.462641.3
    137 schema:familyName Raghavendra
    138 schema:givenName K.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377544375.75
    140 rdf:type schema:Person
    141 sg:person.015277271042.45 schema:affiliation grid-institutes:grid.508680.3
    142 schema:familyName Verma
    143 schema:givenName Shweta
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015277271042.45
    145 rdf:type schema:Person
    146 sg:person.015605065315.83 schema:affiliation grid-institutes:grid.462641.3
    147 schema:familyName Stalin
    148 schema:givenName M.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605065315.83
    150 rdf:type schema:Person
    151 sg:pub.10.1007/s11661-004-0233-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028720777
    152 https://doi.org/10.1007/s11661-004-0233-2
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s11661-006-1053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412861
    155 https://doi.org/10.1007/s11661-006-1053-3
    156 rdf:type schema:CreativeWork
    157 grid-institutes:grid.462641.3 schema:alternateName CSIR-National Aerospace Laboratories, 560 017, Bangalore, India
    158 schema:name CSIR-National Aerospace Laboratories, 560 017, Bangalore, India
    159 rdf:type schema:Organization
    160 grid-institutes:grid.508680.3 schema:alternateName Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India
    161 schema:name Gas Turbine Research Establishment (GTRE), 560 093, Bangalore, India
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...