Quantifying the integrated water and carbon cycle in a data-limited karst basin using a process-based hydrologic model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-18

AUTHORS

Han Qiu, Jie Niu, Bill X. Hu

ABSTRACT

Quantitative estimation of the terrestrial hydrologic fluxes in a karst basin is difficult due to the wide distribution of karst pores, the strong water conductivity of aquifer medium, and the complex groundwater dynamics. In this work, we attempt to estimate the water and carbon budgets of a data scarce karst basin using a process-based hydrological model. Without the knowledge of subsurface structure and rock medium, the karst pipes were simply treated as open channels. The model can generally predict the stream discharge and evapotranspiration, and reproduce the seasonal trend of the gross primary production (GPP) and net primary production (NPP) of the basin, with this simplification. The main hydrologic budgets were estimated and reveal how water partitions in the hydrologic cycle in this karst basin. The simulated results also indicate the main source (either baseflow or surface runoff) of the stream flow in different seasons. However, the simulation of the surface/subsurface hydrologic interactions, groundwater/stream flow exchange, and the vegetation root zone dynamics could be improved if the karst groundwater dynamics, especially for the area with complicated karst pipe system, are depicted in detail. More... »

PAGES

328

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12665-019-8324-y

DOI

http://dx.doi.org/10.1007/s12665-019-8324-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1114802059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Civil and Environmental Engineering, Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Civil and Environmental Engineering, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Han", 
        "id": "sg:person.011557565570.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557565570.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Jie", 
        "id": "sg:person.013420450661.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ngeo2382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050098833", 
          "https://doi.org/10.1038/ngeo2382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026048043", 
          "https://doi.org/10.1038/nature13006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13146-013-0130-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028598546", 
          "https://doi.org/10.1007/s13146-013-0130-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-018-7660-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105133033", 
          "https://doi.org/10.1007/s12665-018-7660-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31306-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030424854", 
          "https://doi.org/10.1007/3-540-31306-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002549900072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871617", 
          "https://doi.org/10.1007/s002549900072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00767-013-0243-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036731670", 
          "https://doi.org/10.1007/s00767-013-0243-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-013-1036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045518523", 
          "https://doi.org/10.1007/s10040-013-1036-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-18", 
    "datePublishedReg": "2019-05-18", 
    "description": "Quantitative estimation of the terrestrial hydrologic fluxes in a karst basin is difficult due to the wide distribution of karst pores, the strong water conductivity of aquifer medium, and the complex groundwater dynamics. In this work, we attempt to estimate the water and carbon budgets of a data scarce karst basin using a process-based hydrological model. Without the knowledge of subsurface structure and rock medium, the karst pipes were simply treated as open channels. The model can generally predict the stream discharge and evapotranspiration, and reproduce the seasonal trend of the gross primary production (GPP) and net primary production (NPP) of the basin, with this simplification. The main hydrologic budgets were estimated and reveal how water partitions in the hydrologic cycle in this karst basin. The simulated results also indicate the main source (either baseflow or surface runoff) of the stream flow in different seasons. However, the simulation of the surface/subsurface hydrologic interactions, groundwater/stream flow exchange, and the vegetation root zone dynamics could be improved if the karst groundwater dynamics, especially for the area with complicated karst pipe system, are depicted in detail.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12665-019-8324-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313768", 
        "issn": [
          "0943-0105", 
          "1432-0495"
        ], 
        "name": "Environmental Earth Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "karst basin", 
      "gross primary production", 
      "net primary production", 
      "groundwater dynamics", 
      "primary production", 
      "process-based hydrological model", 
      "process-based hydrologic model", 
      "hydrologic budget", 
      "hydrologic fluxes", 
      "karst pipes", 
      "hydrologic cycle", 
      "hydrologic interactions", 
      "hydrological model", 
      "hydrologic model", 
      "stream discharge", 
      "subsurface structure", 
      "carbon cycle", 
      "stream flow", 
      "aquifer media", 
      "carbon budget", 
      "basin", 
      "zone dynamics", 
      "seasonal trends", 
      "flow exchange", 
      "rock medium", 
      "integrated water", 
      "water conductivity", 
      "different seasons", 
      "main source", 
      "budget", 
      "water partition", 
      "water", 
      "quantitative estimation", 
      "wide distribution", 
      "groundwater", 
      "evapotranspiration", 
      "pipe system", 
      "simulated results", 
      "flux", 
      "dynamics", 
      "cycle", 
      "season", 
      "discharge", 
      "open channels", 
      "trends", 
      "area", 
      "model", 
      "source", 
      "flow", 
      "distribution", 
      "pipe", 
      "exchange", 
      "conductivity", 
      "pores", 
      "simulations", 
      "estimation", 
      "channels", 
      "production", 
      "simplification", 
      "structure", 
      "detail", 
      "system", 
      "medium", 
      "work", 
      "results", 
      "partition", 
      "interaction", 
      "knowledge", 
      "terrestrial hydrologic fluxes", 
      "karst pores", 
      "strong water conductivity", 
      "complex groundwater dynamics", 
      "data scarce karst basin", 
      "scarce karst basin", 
      "main hydrologic budgets", 
      "surface/subsurface hydrologic interactions", 
      "subsurface hydrologic interactions", 
      "stream flow exchange", 
      "vegetation root zone dynamics", 
      "root zone dynamics", 
      "karst groundwater dynamics", 
      "complicated karst pipe system", 
      "karst pipe system", 
      "data-limited karst basin"
    ], 
    "name": "Quantifying the integrated water and carbon cycle in a data-limited karst basin using a process-based hydrologic model", 
    "pagination": "328", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1114802059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12665-019-8324-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12665-019-8324-y", 
      "https://app.dimensions.ai/details/publication/pub.1114802059"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_805.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12665-019-8324-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8324-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8324-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8324-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8324-y'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      22 PREDICATES      119 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12665-019-8324-y schema:about anzsrc-for:04
2 anzsrc-for:0406
3 anzsrc-for:09
4 anzsrc-for:0907
5 schema:author N25c736aa05cb45afaeb5731be830030b
6 schema:citation sg:pub.10.1007/3-540-31306-0
7 sg:pub.10.1007/s002549900072
8 sg:pub.10.1007/s00767-013-0243-3
9 sg:pub.10.1007/s10040-013-1036-6
10 sg:pub.10.1007/s12665-018-7660-7
11 sg:pub.10.1007/s13146-013-0130-0
12 sg:pub.10.1038/nature13006
13 sg:pub.10.1038/ngeo2382
14 schema:datePublished 2019-05-18
15 schema:datePublishedReg 2019-05-18
16 schema:description Quantitative estimation of the terrestrial hydrologic fluxes in a karst basin is difficult due to the wide distribution of karst pores, the strong water conductivity of aquifer medium, and the complex groundwater dynamics. In this work, we attempt to estimate the water and carbon budgets of a data scarce karst basin using a process-based hydrological model. Without the knowledge of subsurface structure and rock medium, the karst pipes were simply treated as open channels. The model can generally predict the stream discharge and evapotranspiration, and reproduce the seasonal trend of the gross primary production (GPP) and net primary production (NPP) of the basin, with this simplification. The main hydrologic budgets were estimated and reveal how water partitions in the hydrologic cycle in this karst basin. The simulated results also indicate the main source (either baseflow or surface runoff) of the stream flow in different seasons. However, the simulation of the surface/subsurface hydrologic interactions, groundwater/stream flow exchange, and the vegetation root zone dynamics could be improved if the karst groundwater dynamics, especially for the area with complicated karst pipe system, are depicted in detail.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb24b14c5f38c4b458c848274b46a8d48
21 Nfd99906b290d49e386d6ad205594d7be
22 sg:journal.1313768
23 schema:keywords aquifer media
24 area
25 basin
26 budget
27 carbon budget
28 carbon cycle
29 channels
30 complex groundwater dynamics
31 complicated karst pipe system
32 conductivity
33 cycle
34 data scarce karst basin
35 data-limited karst basin
36 detail
37 different seasons
38 discharge
39 distribution
40 dynamics
41 estimation
42 evapotranspiration
43 exchange
44 flow
45 flow exchange
46 flux
47 gross primary production
48 groundwater
49 groundwater dynamics
50 hydrologic budget
51 hydrologic cycle
52 hydrologic fluxes
53 hydrologic interactions
54 hydrologic model
55 hydrological model
56 integrated water
57 interaction
58 karst basin
59 karst groundwater dynamics
60 karst pipe system
61 karst pipes
62 karst pores
63 knowledge
64 main hydrologic budgets
65 main source
66 medium
67 model
68 net primary production
69 open channels
70 partition
71 pipe
72 pipe system
73 pores
74 primary production
75 process-based hydrologic model
76 process-based hydrological model
77 production
78 quantitative estimation
79 results
80 rock medium
81 root zone dynamics
82 scarce karst basin
83 season
84 seasonal trends
85 simplification
86 simulated results
87 simulations
88 source
89 stream discharge
90 stream flow
91 stream flow exchange
92 strong water conductivity
93 structure
94 subsurface hydrologic interactions
95 subsurface structure
96 surface/subsurface hydrologic interactions
97 system
98 terrestrial hydrologic fluxes
99 trends
100 vegetation root zone dynamics
101 water
102 water conductivity
103 water partition
104 wide distribution
105 work
106 zone dynamics
107 schema:name Quantifying the integrated water and carbon cycle in a data-limited karst basin using a process-based hydrologic model
108 schema:pagination 328
109 schema:productId N7b94515fa09d49c5968c469008f4fb06
110 N93d26630c1ea45a7b8e8c94aa33972ef
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114802059
112 https://doi.org/10.1007/s12665-019-8324-y
113 schema:sdDatePublished 2022-01-01T18:53
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N898f3afb81b74c2daff76227babae1e5
116 schema:url https://doi.org/10.1007/s12665-019-8324-y
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N25c736aa05cb45afaeb5731be830030b rdf:first sg:person.011557565570.40
121 rdf:rest N4a0453b915d94406bef81b938d2544c4
122 N4a0453b915d94406bef81b938d2544c4 rdf:first sg:person.013420450661.39
123 rdf:rest Nfa80848899144508b75c6c85b8d3684f
124 N7b94515fa09d49c5968c469008f4fb06 schema:name dimensions_id
125 schema:value pub.1114802059
126 rdf:type schema:PropertyValue
127 N898f3afb81b74c2daff76227babae1e5 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N93d26630c1ea45a7b8e8c94aa33972ef schema:name doi
130 schema:value 10.1007/s12665-019-8324-y
131 rdf:type schema:PropertyValue
132 Nb24b14c5f38c4b458c848274b46a8d48 schema:volumeNumber 78
133 rdf:type schema:PublicationVolume
134 Nfa80848899144508b75c6c85b8d3684f rdf:first sg:person.012556140447.41
135 rdf:rest rdf:nil
136 Nfd99906b290d49e386d6ad205594d7be schema:issueNumber 11
137 rdf:type schema:PublicationIssue
138 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
139 schema:name Earth Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
142 schema:name Physical Geography and Environmental Geoscience
143 rdf:type schema:DefinedTerm
144 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
145 schema:name Engineering
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
148 schema:name Environmental Engineering
149 rdf:type schema:DefinedTerm
150 sg:journal.1313768 schema:issn 0943-0105
151 1432-0495
152 schema:name Environmental Earth Sciences
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.011557565570.40 schema:affiliation grid-institutes:grid.17088.36
156 schema:familyName Qiu
157 schema:givenName Han
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557565570.40
159 rdf:type schema:Person
160 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.258164.c
161 schema:familyName Hu
162 schema:givenName Bill X.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
164 rdf:type schema:Person
165 sg:person.013420450661.39 schema:affiliation grid-institutes:grid.258164.c
166 schema:familyName Niu
167 schema:givenName Jie
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39
169 rdf:type schema:Person
170 sg:pub.10.1007/3-540-31306-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030424854
171 https://doi.org/10.1007/3-540-31306-0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s002549900072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046871617
174 https://doi.org/10.1007/s002549900072
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00767-013-0243-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036731670
177 https://doi.org/10.1007/s00767-013-0243-3
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s10040-013-1036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045518523
180 https://doi.org/10.1007/s10040-013-1036-6
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s12665-018-7660-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105133033
183 https://doi.org/10.1007/s12665-018-7660-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s13146-013-0130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028598546
186 https://doi.org/10.1007/s13146-013-0130-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature13006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026048043
189 https://doi.org/10.1038/nature13006
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ngeo2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050098833
192 https://doi.org/10.1038/ngeo2382
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.17088.36 schema:alternateName Department of Civil and Environmental Engineering, Michigan State University, 48824, East Lansing, MI, USA
195 schema:name Department of Civil and Environmental Engineering, Michigan State University, 48824, East Lansing, MI, USA
196 rdf:type schema:Organization
197 grid-institutes:grid.258164.c schema:alternateName Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China
198 schema:name Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...