Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Mohammadreza Koopialipoor, Ebrahim Noroozi Ghaleini, Hossein Tootoonchi, Danial Jahed Armaghani, Mojtaba Haghighi, Ahmadreza Hedayat

ABSTRACT

The drilling and blasting technique is among the common techniques for excavating tunnels with different shapes and sizes. Nevertheless, due to the dynamic energy involved, the rock mass around the excavation zone experiences damage and reduction in stiffness and strength. One of the most common and important issues that occurs during the tunneling process is the overbreak which is defined as the surplus drilled section of the tunnel. It seems that prediction of overbreak before blasting operations is necessary to minimize the possible damages. This paper develops a new hybrid model, namely, an artificial bee colony (ABC)–artificial neural network (ANN) to predict overbreak. Considering the most important parameters on overbreak, many ABC–ANN models were constructed based on their effective parameters. A pre-developed ANN model was also developed for comparison. In order to evaluate the obtained results of this study, a new system, i.e., the color intensity rating (CIR), was introduced and established to select the best ABC–ANN and ANN models. As a result, the ABC–ANN receives a high level of accuracy in predicting overbreak induced by drilling and blasting. The coefficients of determination (R2) for the ANN and ABC–ANN are 0.9121 and 0.9428, respectively, for training datasets. This revealed that the ABC–ANN model (as a new model in the field of this study) is the best one among the models developed in this study. More... »

PAGES

165

References to SciGraph publications

  • 2014-10. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting in ENGINEERING WITH COMPUTERS
  • 2019-04. A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls in ENGINEERING WITH COMPUTERS
  • 2018-07-28. Predicting tunnel boring machine performance through a new model based on the group method of data handling in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-05. The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization in WATER RESOURCES MANAGEMENT
  • 2013-10. Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes in ENVIRONMENTAL EARTH SCIENCES
  • 2019-03. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 1996-12. Overbreak and underbreak in underground openings Part 1: measurement using the light sectioning method and digital image processing in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 1996-12. Overbreak and underbreak in underground openings Part 2: causes and implications in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2018-08. A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2016-01. Prediction of seismic slope stability through combination of particle swarm optimization and neural network in ENGINEERING WITH COMPUTERS
  • 2004-08. Human response to blast-induced vibration and air-overpressure: an Indian scenario in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-08. Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach in ENVIRONMENTAL EARTH SCIENCES
  • 2015-11. Application of two intelligent systems in predicting environmental impacts of quarry blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2014-11. Flyrock in bench blasting: a comprehensive review in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 1943-12. A logical calculus of the ideas immanent in nervous activity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2016-04. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2007-11. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm in JOURNAL OF GLOBAL OPTIMIZATION
  • 1993. Statistical aspects of neural networks in NETWORKS AND CHAOS — STATISTICAL AND PROBABILISTIC ASPECTS
  • 2019-01. Three hybrid intelligent models in estimating flyrock distance resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2018-10-24. Overbreak prediction and optimization in tunnel using neural network and bee colony techniques in ENGINEERING WITH COMPUTERS
  • 2016-02. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2018-09-18. Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques in ENGINEERING WITH COMPUTERS
  • 2018-05-28. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions in SOFT COMPUTING
  • 2013-09. Backbreak prediction in the Chadormalu iron mine using artificial neural network in NEURAL COMPUTING AND APPLICATIONS
  • 2016-01. Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods in ENGINEERING WITH COMPUTERS
  • 2012. An Artificial Bee Colony Algorithm for the Unrelated Parallel Machines Scheduling Problem in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XII
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12665-019-8163-x

    DOI

    http://dx.doi.org/10.1007/s12665-019-8163-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112434483


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koopialipoor", 
            "givenName": "Mohammadreza", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghaleini", 
            "givenName": "Ebrahim Noroozi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tootoonchi", 
            "givenName": "Hossein", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jahed Armaghani", 
            "givenName": "Danial", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haghighi", 
            "givenName": "Mojtaba", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Colorado School of Mines", 
              "id": "https://www.grid.ac/institutes/grid.254549.b", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hedayat", 
            "givenName": "Ahmadreza", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11269-016-1304-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000974137", 
              "https://doi.org/10.1007/s11269-016-1304-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32964-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001473417", 
              "https://doi.org/10.1007/978-3-642-32964-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0588-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002537991", 
              "https://doi.org/10.1007/s10064-014-0588-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311697218719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002892483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0400-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003281017", 
              "https://doi.org/10.1007/s00366-015-0400-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016800802", 
              "https://doi.org/10.1007/s00521-012-1038-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00421947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018271521", 
              "https://doi.org/10.1007/bf00421947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-012-2214-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020162888", 
              "https://doi.org/10.1007/s12665-012-2214-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2009.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021893925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tust.2016.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022113557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0402-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022416262", 
              "https://doi.org/10.1007/s00366-015-0402-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2014.09.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024106331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/643715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025107008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1908-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927733", 
              "https://doi.org/10.1007/s12517-015-1908-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-004-0228-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028059003", 
              "https://doi.org/10.1007/s10064-004-0228-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2011.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028139700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028715170", 
              "https://doi.org/10.1007/bf02478259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tust.2004.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029124784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4274-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030000705", 
              "https://doi.org/10.1007/s12665-015-4274-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-2312(95)00039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030126723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tust.2013.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040062717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0886-7798(00)00055-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040460492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petlm.2015.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040761115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2007.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040846051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-012-0298-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042514146", 
              "https://doi.org/10.1007/s00366-012-0298-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0720-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042960605", 
              "https://doi.org/10.1007/s10064-015-0720-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2008.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043064201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tust.2008.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043117078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00421946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046887882", 
              "https://doi.org/10.1007/bf00421946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543869", 
              "https://doi.org/10.1007/s10898-007-9149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543869", 
              "https://doi.org/10.1007/s10898-007-9149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0887-3801(1994)8:2(129)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057609029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3099-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089745563", 
              "https://doi.org/10.1007/978-1-4899-3099-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/siu.2007.4298679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094762066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470512517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470512517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-018-0459-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424638", 
              "https://doi.org/10.1007/s10706-018-0459-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-018-3253-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104266062", 
              "https://doi.org/10.1007/s00500-018-3253-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-018-3253-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104266062", 
              "https://doi.org/10.1007/s00500-018-3253-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-018-1349-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105883247", 
              "https://doi.org/10.1007/s10064-018-1349-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-018-1349-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105883247", 
              "https://doi.org/10.1007/s10064-018-1349-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0642-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107086360", 
              "https://doi.org/10.1007/s00366-018-0642-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0658-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107828519", 
              "https://doi.org/10.1007/s00366-018-0658-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "The drilling and blasting technique is among the common techniques for excavating tunnels with different shapes and sizes. Nevertheless, due to the dynamic energy involved, the rock mass around the excavation zone experiences damage and reduction in stiffness and strength. One of the most common and important issues that occurs during the tunneling process is the overbreak which is defined as the surplus drilled section of the tunnel. It seems that prediction of overbreak before blasting operations is necessary to minimize the possible damages. This paper develops a new hybrid model, namely, an artificial bee colony (ABC)\u2013artificial neural network (ANN) to predict overbreak. Considering the most important parameters on overbreak, many ABC\u2013ANN models were constructed based on their effective parameters. A pre-developed ANN model was also developed for comparison. In order to evaluate the obtained results of this study, a new system, i.e., the color intensity rating (CIR), was introduced and established to select the best ABC\u2013ANN and ANN models. As a result, the ABC\u2013ANN receives a high level of accuracy in predicting overbreak induced by drilling and blasting. The coefficients of determination (R2) for the ANN and ABC\u2013ANN are 0.9121 and 0.9428, respectively, for training datasets. This revealed that the ABC\u2013ANN model (as a new model in the field of this study) is the best one among the models developed in this study.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12665-019-8163-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1346438", 
            "issn": [
              "1866-6280", 
              "1866-6299"
            ], 
            "name": "Environmental Earth Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "name": "Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN", 
        "pagination": "165", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2cd69cc7fdf39d59dcd435a9175d061f0183bd69088a61a15b7d14839dd2424d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12665-019-8163-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112434483"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12665-019-8163-x", 
          "https://app.dimensions.ai/details/publication/pub.1112434483"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12665-019-8163-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8163-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8163-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8163-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-019-8163-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    252 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12665-019-8163-x schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Na624842c843c40b68cfa11605ba91ce7
    4 schema:citation sg:pub.10.1007/978-1-4899-3099-6_2
    5 sg:pub.10.1007/978-3-642-32964-7_15
    6 sg:pub.10.1007/bf00421946
    7 sg:pub.10.1007/bf00421947
    8 sg:pub.10.1007/bf02478259
    9 sg:pub.10.1007/s00366-012-0298-2
    10 sg:pub.10.1007/s00366-015-0400-7
    11 sg:pub.10.1007/s00366-015-0402-5
    12 sg:pub.10.1007/s00366-015-0415-0
    13 sg:pub.10.1007/s00366-018-0596-4
    14 sg:pub.10.1007/s00366-018-0625-3
    15 sg:pub.10.1007/s00366-018-0642-2
    16 sg:pub.10.1007/s00366-018-0658-7
    17 sg:pub.10.1007/s00500-018-3253-3
    18 sg:pub.10.1007/s00521-012-1038-7
    19 sg:pub.10.1007/s10064-004-0228-7
    20 sg:pub.10.1007/s10064-014-0588-6
    21 sg:pub.10.1007/s10064-015-0720-2
    22 sg:pub.10.1007/s10064-017-1116-2
    23 sg:pub.10.1007/s10064-018-1349-8
    24 sg:pub.10.1007/s10706-018-0459-1
    25 sg:pub.10.1007/s10898-007-9149-x
    26 sg:pub.10.1007/s11269-016-1304-z
    27 sg:pub.10.1007/s12517-015-1908-2
    28 sg:pub.10.1007/s12665-012-2214-x
    29 sg:pub.10.1007/s12665-015-4274-1
    30 https://doi.org/10.1002/9780470512517
    31 https://doi.org/10.1016/0893-6080(89)90020-8
    32 https://doi.org/10.1016/0925-2312(95)00039-9
    33 https://doi.org/10.1016/j.enggeo.2007.10.009
    34 https://doi.org/10.1016/j.eswa.2009.11.003
    35 https://doi.org/10.1016/j.ijrmms.2008.02.007
    36 https://doi.org/10.1016/j.measurement.2014.09.075
    37 https://doi.org/10.1016/j.petlm.2015.11.004
    38 https://doi.org/10.1016/j.petrol.2011.05.006
    39 https://doi.org/10.1016/j.tust.2004.05.004
    40 https://doi.org/10.1016/j.tust.2008.01.007
    41 https://doi.org/10.1016/j.tust.2013.06.003
    42 https://doi.org/10.1016/j.tust.2016.12.009
    43 https://doi.org/10.1016/s0886-7798(00)00055-9
    44 https://doi.org/10.1061/(asce)0887-3801(1994)8:2(129)
    45 https://doi.org/10.1080/014311697218719
    46 https://doi.org/10.1109/siu.2007.4298679
    47 https://doi.org/10.1155/2014/643715
    48 schema:datePublished 2019-03
    49 schema:datePublishedReg 2019-03-01
    50 schema:description The drilling and blasting technique is among the common techniques for excavating tunnels with different shapes and sizes. Nevertheless, due to the dynamic energy involved, the rock mass around the excavation zone experiences damage and reduction in stiffness and strength. One of the most common and important issues that occurs during the tunneling process is the overbreak which is defined as the surplus drilled section of the tunnel. It seems that prediction of overbreak before blasting operations is necessary to minimize the possible damages. This paper develops a new hybrid model, namely, an artificial bee colony (ABC)–artificial neural network (ANN) to predict overbreak. Considering the most important parameters on overbreak, many ABC–ANN models were constructed based on their effective parameters. A pre-developed ANN model was also developed for comparison. In order to evaluate the obtained results of this study, a new system, i.e., the color intensity rating (CIR), was introduced and established to select the best ABC–ANN and ANN models. As a result, the ABC–ANN receives a high level of accuracy in predicting overbreak induced by drilling and blasting. The coefficients of determination (R2) for the ANN and ABC–ANN are 0.9121 and 0.9428, respectively, for training datasets. This revealed that the ABC–ANN model (as a new model in the field of this study) is the best one among the models developed in this study.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf N194b9335c0b647b19efef1dbed36b2df
    55 N700388affa594e8896ba905a2f2fbd9e
    56 sg:journal.1346438
    57 schema:name Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN
    58 schema:pagination 165
    59 schema:productId N00cced7734844b7da9670acd99444011
    60 Nae160f313baf4e0892cb77459e1ef3b3
    61 Nc1966735210a469fac28baa3725ceb9b
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112434483
    63 https://doi.org/10.1007/s12665-019-8163-x
    64 schema:sdDatePublished 2019-04-11T13:32
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nb4308aabb71842609d3ae4e2203715c5
    67 schema:url https://link.springer.com/10.1007%2Fs12665-019-8163-x
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N00cced7734844b7da9670acd99444011 schema:name dimensions_id
    72 schema:value pub.1112434483
    73 rdf:type schema:PropertyValue
    74 N194b9335c0b647b19efef1dbed36b2df schema:issueNumber 5
    75 rdf:type schema:PublicationIssue
    76 N1ea4cc410f49414c9b8bf9b9b3c132d0 rdf:first N5f10951810c346368e134f5bc0b9a6da
    77 rdf:rest Ndc954f49c2ca465cbe7ddc3cc8bf4790
    78 N321d2b2229ef409ca1f95eb7ff244928 rdf:first Nc7fb0fac31fc4b4b93f69d68a52e2507
    79 rdf:rest N1ea4cc410f49414c9b8bf9b9b3c132d0
    80 N5f10951810c346368e134f5bc0b9a6da schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    81 schema:familyName Tootoonchi
    82 schema:givenName Hossein
    83 rdf:type schema:Person
    84 N6a88623c195a44a2902bb227f13a0923 rdf:first Nee8d3b6568714222a93a023f52713540
    85 rdf:rest Nde39f562863b45188aa09ac78102dbe9
    86 N6b8524e55a294f70b5b58521a08df207 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
    87 schema:familyName Hedayat
    88 schema:givenName Ahmadreza
    89 rdf:type schema:Person
    90 N700388affa594e8896ba905a2f2fbd9e schema:volumeNumber 78
    91 rdf:type schema:PublicationVolume
    92 N7f512f06ce7d4c28818bd78976c8aacd schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    93 schema:familyName Jahed Armaghani
    94 schema:givenName Danial
    95 rdf:type schema:Person
    96 Na624842c843c40b68cfa11605ba91ce7 rdf:first Nba657063b56845a4884bf7d591146d9b
    97 rdf:rest N321d2b2229ef409ca1f95eb7ff244928
    98 Nae160f313baf4e0892cb77459e1ef3b3 schema:name doi
    99 schema:value 10.1007/s12665-019-8163-x
    100 rdf:type schema:PropertyValue
    101 Nb4308aabb71842609d3ae4e2203715c5 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Nba657063b56845a4884bf7d591146d9b schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    104 schema:familyName Koopialipoor
    105 schema:givenName Mohammadreza
    106 rdf:type schema:Person
    107 Nc1966735210a469fac28baa3725ceb9b schema:name readcube_id
    108 schema:value 2cd69cc7fdf39d59dcd435a9175d061f0183bd69088a61a15b7d14839dd2424d
    109 rdf:type schema:PropertyValue
    110 Nc7fb0fac31fc4b4b93f69d68a52e2507 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    111 schema:familyName Ghaleini
    112 schema:givenName Ebrahim Noroozi
    113 rdf:type schema:Person
    114 Ndc954f49c2ca465cbe7ddc3cc8bf4790 rdf:first N7f512f06ce7d4c28818bd78976c8aacd
    115 rdf:rest N6a88623c195a44a2902bb227f13a0923
    116 Nde39f562863b45188aa09ac78102dbe9 rdf:first N6b8524e55a294f70b5b58521a08df207
    117 rdf:rest rdf:nil
    118 Nee8d3b6568714222a93a023f52713540 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    119 schema:familyName Haghighi
    120 schema:givenName Mojtaba
    121 rdf:type schema:Person
    122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Resources Engineering and Extractive Metallurgy
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1346438 schema:issn 1866-6280
    129 1866-6299
    130 schema:name Environmental Earth Sciences
    131 rdf:type schema:Periodical
    132 sg:pub.10.1007/978-1-4899-3099-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745563
    133 https://doi.org/10.1007/978-1-4899-3099-6_2
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-642-32964-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001473417
    136 https://doi.org/10.1007/978-3-642-32964-7_15
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf00421946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046887882
    139 https://doi.org/10.1007/bf00421946
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf00421947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018271521
    142 https://doi.org/10.1007/bf00421947
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
    145 https://doi.org/10.1007/bf02478259
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00366-012-0298-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514146
    148 https://doi.org/10.1007/s00366-012-0298-2
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00366-015-0400-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281017
    151 https://doi.org/10.1007/s00366-015-0400-7
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00366-015-0402-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022416262
    154 https://doi.org/10.1007/s00366-015-0402-5
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    157 https://doi.org/10.1007/s00366-015-0415-0
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00366-018-0596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330868
    160 https://doi.org/10.1007/s00366-018-0596-4
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00366-018-0625-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067651
    163 https://doi.org/10.1007/s00366-018-0625-3
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00366-018-0642-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086360
    166 https://doi.org/10.1007/s00366-018-0642-2
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00366-018-0658-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107828519
    169 https://doi.org/10.1007/s00366-018-0658-7
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00500-018-3253-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104266062
    172 https://doi.org/10.1007/s00500-018-3253-3
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00521-012-1038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800802
    175 https://doi.org/10.1007/s00521-012-1038-7
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10064-004-0228-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028059003
    178 https://doi.org/10.1007/s10064-004-0228-7
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s10064-014-0588-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002537991
    181 https://doi.org/10.1007/s10064-014-0588-6
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s10064-015-0720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960605
    184 https://doi.org/10.1007/s10064-015-0720-2
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s10064-017-1116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314294
    187 https://doi.org/10.1007/s10064-017-1116-2
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s10064-018-1349-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105883247
    190 https://doi.org/10.1007/s10064-018-1349-8
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10706-018-0459-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424638
    193 https://doi.org/10.1007/s10706-018-0459-1
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
    196 https://doi.org/10.1007/s10898-007-9149-x
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s11269-016-1304-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000974137
    199 https://doi.org/10.1007/s11269-016-1304-z
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s12517-015-1908-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927733
    202 https://doi.org/10.1007/s12517-015-1908-2
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s12665-012-2214-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020162888
    205 https://doi.org/10.1007/s12665-012-2214-x
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s12665-015-4274-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030000705
    208 https://doi.org/10.1007/s12665-015-4274-1
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/9780470512517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661383
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/0925-2312(95)00039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030126723
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.enggeo.2007.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040846051
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.eswa.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021893925
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.ijrmms.2008.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043064201
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.measurement.2014.09.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024106331
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.petlm.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040761115
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.petrol.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028139700
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.tust.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029124784
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.tust.2008.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043117078
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.tust.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040062717
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.tust.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022113557
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/s0886-7798(00)00055-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040460492
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1061/(asce)0887-3801(1994)8:2(129) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609029
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/014311697218719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002892483
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/siu.2007.4298679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094762066
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1155/2014/643715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107008
    245 rdf:type schema:CreativeWork
    246 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
    247 schema:name Faculty of Civil and Environmental Engineering, Colorado School of Mines, 80401, Golden, CO, USA
    248 rdf:type schema:Organization
    249 https://www.grid.ac/institutes/grid.411368.9 schema:alternateName Amirkabir University of Technology
    250 schema:name Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    251 Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
    252 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...