The identification of fault zones in deep karst aquifer of North China coal mine using parallel directional well logs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Dan Huang, Zaibin Liu, Wenke Wang, Shenghui Nan, Li Chen, Yaoquan Gao

ABSTRACT

Water inrush from Ordovician karst aquifer in North China coal mine has become a key issue on underground coal mining. To address this problem, it is necessary to identify fault zones, because fault zones might connect limestone aquifers and coal seams, enabling Ordovician karst water to enter the mine. In the study area, a series of parallel directional holes were drilled along Ordovician limestone at depths between 70 and 90 m under Ordovician limestone boundary. To conveniently detect fault zones and govern mine water disasters, a series of natural gamma-ray logging while drilling (GRLWD) were undertaken. The entire detecting region can be comprehensively covered by several directional borehole groups. Then, fast Fourier transform and short-time Fourier transform approaches were employed on the basis of GRLWD data and geological data to extract faults information. A segmented identification method for deep fault zones was established in this study. This method can be used to markedly improve the identification of fault zones within Ordovician limestone or the unitary lithology formation and provide crucial information relevant for deep coal mining safety. More... »

PAGES

761

Journal

TITLE

Environmental Earth Sciences

ISSUE

22

VOLUME

77

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12665-018-7955-8

DOI

http://dx.doi.org/10.1007/s12665-018-7955-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109974468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2019an University, 710054, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Dan", 
        "id": "sg:person.014711430130.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014711430130.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2019an University, 710054, Xi\u2019an, Shaanxi, China", 
            "Xi\u2019an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi\u2019an, Shaanxi, China", 
            "Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zaibin", 
        "id": "sg:person.011355677224.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355677224.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2019an University, 710054, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenke", 
        "id": "sg:person.01306450545.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306450545.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Xi\u2019an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi\u2019an, Shaanxi, China", 
            "Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nan", 
        "givenName": "Shenghui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Environmental Science and Engineering, Chang\u2019an University, 710054, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.010204655347.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204655347.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Xi\u2019an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi\u2019an, Shaanxi, China", 
            "Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yaoquan", 
        "id": "sg:person.015736542224.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736542224.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2014.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2012-0125.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000782107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1965-0178586-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000912574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3541-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003705546", 
          "https://doi.org/10.1007/s12665-014-3541-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004598696", 
          "https://doi.org/10.1007/s10040-006-0021-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004598696", 
          "https://doi.org/10.1007/s10040-006-0021-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cretres.2012.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010732999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10230-016-0407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011701602", 
          "https://doi.org/10.1007/s10230-016-0407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10230-016-0407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011701602", 
          "https://doi.org/10.1007/s10230-016-0407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2016.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012289178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169508954501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014096178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(97)00054-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020199241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0376-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025999044", 
          "https://doi.org/10.1007/s12665-009-0376-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1987.tb00838.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030464416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2012.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032129756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl028050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032873202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2012-0407.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035064880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-015-4219-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039292717", 
          "https://doi.org/10.1007/s12665-015-4219-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1006-1266(08)60301-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039394945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tecto.2012.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2009.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041649291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(99)00085-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046505435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.69.4.711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050057854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-016-0156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250618", 
          "https://doi.org/10.1007/s10706-016-0156-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-016-0156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250618", 
          "https://doi.org/10.1007/s10706-016-0156-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2014.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsg.2006.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053663511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9364(2000)126:1(68)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057575525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1977.10770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13168/agg.2014.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065005384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.16.001198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065213313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/134011-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068949701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apradiso.2017.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090386470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-018-7389-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101394845", 
          "https://doi.org/10.1007/s12665-018-7389-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-018-7389-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101394845", 
          "https://doi.org/10.1007/s12665-018-7389-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-018-7389-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101394845", 
          "https://doi.org/10.1007/s12665-018-7389-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-018-7389-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101394845", 
          "https://doi.org/10.1007/s12665-018-7389-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2018.09.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107318719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w10101409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107538800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Water inrush from Ordovician karst aquifer in North China coal mine has become a key issue on underground coal mining. To address this problem, it is necessary to identify fault zones, because fault zones might connect limestone aquifers and coal seams, enabling Ordovician karst water to enter the mine. In the study area, a series of parallel directional holes were drilled along Ordovician limestone at depths between 70 and 90 m under Ordovician limestone boundary. To conveniently detect fault zones and govern mine water disasters, a series of natural gamma-ray logging while drilling (GRLWD) were undertaken. The entire detecting region can be comprehensively covered by several directional borehole groups. Then, fast Fourier transform and short-time Fourier transform approaches were employed on the basis of GRLWD data and geological data to extract faults information. A segmented identification method for deep fault zones was established in this study. This method can be used to markedly improve the identification of fault zones within Ordovician limestone or the unitary lithology formation and provide crucial information relevant for deep coal mining safety.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12665-018-7955-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1346438", 
        "issn": [
          "1866-6280", 
          "1866-6299"
        ], 
        "name": "Environmental Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "22", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "The identification of fault zones in deep karst aquifer of North China coal mine using parallel directional well logs", 
    "pagination": "761", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0bc818f6c12c3cbc02604a56b71b593342f54ca6633a01b4ac53526740c91c23"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12665-018-7955-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109974468"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12665-018-7955-8", 
      "https://app.dimensions.ai/details/publication/pub.1109974468"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000266_0000000266/records_39052_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12665-018-7955-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7955-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7955-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7955-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7955-8'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12665-018-7955-8 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author Nf874365d8b3e4bd0803f97bded33d342
4 schema:citation sg:pub.10.1007/s10040-006-0021-8
5 sg:pub.10.1007/s10230-016-0407-3
6 sg:pub.10.1007/s10706-016-0156-x
7 sg:pub.10.1007/s12665-009-0376-y
8 sg:pub.10.1007/s12665-014-3541-x
9 sg:pub.10.1007/s12665-015-4219-8
10 sg:pub.10.1007/s12665-018-7389-3
11 https://doi.org/10.1016/j.apacoust.2014.11.004
12 https://doi.org/10.1016/j.apradiso.2017.06.038
13 https://doi.org/10.1016/j.coal.2009.06.007
14 https://doi.org/10.1016/j.cretres.2012.05.005
15 https://doi.org/10.1016/j.jappgeo.2016.03.025
16 https://doi.org/10.1016/j.jhydrol.2018.09.058
17 https://doi.org/10.1016/j.jsg.2006.07.012
18 https://doi.org/10.1016/j.marpetgeo.2014.10.010
19 https://doi.org/10.1016/j.palaeo.2012.09.004
20 https://doi.org/10.1016/j.tecto.2012.08.021
21 https://doi.org/10.1016/s0013-7952(99)00085-x
22 https://doi.org/10.1016/s0167-6393(97)00054-x
23 https://doi.org/10.1016/s1006-1266(08)60301-6
24 https://doi.org/10.1029/2006gl028050
25 https://doi.org/10.1061/(asce)0733-9364(2000)126:1(68)
26 https://doi.org/10.1080/01431169508954501
27 https://doi.org/10.1090/s0025-5718-1965-0178586-1
28 https://doi.org/10.1109/proc.1977.10770
29 https://doi.org/10.1111/j.1365-2478.1987.tb00838.x
30 https://doi.org/10.1161/01.cir.69.4.711
31 https://doi.org/10.1190/geo2012-0125.1
32 https://doi.org/10.1190/geo2012-0407.1
33 https://doi.org/10.13168/agg.2014.0017
34 https://doi.org/10.1364/ol.16.001198
35 https://doi.org/10.2118/134011-pa
36 https://doi.org/10.3390/w10101409
37 schema:datePublished 2018-11
38 schema:datePublishedReg 2018-11-01
39 schema:description Water inrush from Ordovician karst aquifer in North China coal mine has become a key issue on underground coal mining. To address this problem, it is necessary to identify fault zones, because fault zones might connect limestone aquifers and coal seams, enabling Ordovician karst water to enter the mine. In the study area, a series of parallel directional holes were drilled along Ordovician limestone at depths between 70 and 90 m under Ordovician limestone boundary. To conveniently detect fault zones and govern mine water disasters, a series of natural gamma-ray logging while drilling (GRLWD) were undertaken. The entire detecting region can be comprehensively covered by several directional borehole groups. Then, fast Fourier transform and short-time Fourier transform approaches were employed on the basis of GRLWD data and geological data to extract faults information. A segmented identification method for deep fault zones was established in this study. This method can be used to markedly improve the identification of fault zones within Ordovician limestone or the unitary lithology formation and provide crucial information relevant for deep coal mining safety.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N1b4001b1382245ae865ab4da08cb4353
44 N919692c3d5a34314a7652d7965d1e410
45 sg:journal.1346438
46 schema:name The identification of fault zones in deep karst aquifer of North China coal mine using parallel directional well logs
47 schema:pagination 761
48 schema:productId N3eead21283d841fc8dafd61942b79955
49 N7217df8c9df34bcea9b4ae598c21d57d
50 N7955d17a8ffc486685b0656d1ba3bb76
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109974468
52 https://doi.org/10.1007/s12665-018-7955-8
53 schema:sdDatePublished 2019-04-11T08:08
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nc45f38e29a6e4f20a9412683b5fd977c
56 schema:url https://link.springer.com/10.1007%2Fs12665-018-7955-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0836bdb15c41495ca50a53c4053ce639 rdf:first sg:person.011355677224.83
61 rdf:rest N4121741d15f54d3b9a5be2fffa9bb17e
62 N0d737d921e9d42958c9a486a5785e027 rdf:first sg:person.010204655347.52
63 rdf:rest Nc0b139f2000e46c38479eb51540526b0
64 N1b4001b1382245ae865ab4da08cb4353 schema:volumeNumber 77
65 rdf:type schema:PublicationVolume
66 N3eead21283d841fc8dafd61942b79955 schema:name readcube_id
67 schema:value 0bc818f6c12c3cbc02604a56b71b593342f54ca6633a01b4ac53526740c91c23
68 rdf:type schema:PropertyValue
69 N4121741d15f54d3b9a5be2fffa9bb17e rdf:first sg:person.01306450545.93
70 rdf:rest N939a6fed24ea41068f0195a6d476010e
71 N42024035d3644cd9853a8b67f97cb10d schema:name Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi’an, Shaanxi, China
72 Xi’an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi’an, Shaanxi, China
73 rdf:type schema:Organization
74 N43be1089aa4f4239b8200116838e6955 schema:affiliation N90ffaf6238334144903438a34e01ca44
75 schema:familyName Nan
76 schema:givenName Shenghui
77 rdf:type schema:Person
78 N7217df8c9df34bcea9b4ae598c21d57d schema:name dimensions_id
79 schema:value pub.1109974468
80 rdf:type schema:PropertyValue
81 N7955d17a8ffc486685b0656d1ba3bb76 schema:name doi
82 schema:value 10.1007/s12665-018-7955-8
83 rdf:type schema:PropertyValue
84 N90ffaf6238334144903438a34e01ca44 schema:name Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi’an, Shaanxi, China
85 Xi’an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi’an, Shaanxi, China
86 rdf:type schema:Organization
87 N919692c3d5a34314a7652d7965d1e410 schema:issueNumber 22
88 rdf:type schema:PublicationIssue
89 N939a6fed24ea41068f0195a6d476010e rdf:first N43be1089aa4f4239b8200116838e6955
90 rdf:rest N0d737d921e9d42958c9a486a5785e027
91 Nc0b139f2000e46c38479eb51540526b0 rdf:first sg:person.015736542224.82
92 rdf:rest rdf:nil
93 Nc45f38e29a6e4f20a9412683b5fd977c schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nf874365d8b3e4bd0803f97bded33d342 rdf:first sg:person.014711430130.61
96 rdf:rest N0836bdb15c41495ca50a53c4053ce639
97 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
98 schema:name Earth Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
101 schema:name Geology
102 rdf:type schema:DefinedTerm
103 sg:journal.1346438 schema:issn 1866-6280
104 1866-6299
105 schema:name Environmental Earth Sciences
106 rdf:type schema:Periodical
107 sg:person.010204655347.52 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
108 schema:familyName Chen
109 schema:givenName Li
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204655347.52
111 rdf:type schema:Person
112 sg:person.011355677224.83 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
113 schema:familyName Liu
114 schema:givenName Zaibin
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355677224.83
116 rdf:type schema:Person
117 sg:person.01306450545.93 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
118 schema:familyName Wang
119 schema:givenName Wenke
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306450545.93
121 rdf:type schema:Person
122 sg:person.014711430130.61 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
123 schema:familyName Huang
124 schema:givenName Dan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014711430130.61
126 rdf:type schema:Person
127 sg:person.015736542224.82 schema:affiliation N42024035d3644cd9853a8b67f97cb10d
128 schema:familyName Gao
129 schema:givenName Yaoquan
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736542224.82
131 rdf:type schema:Person
132 sg:pub.10.1007/s10040-006-0021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004598696
133 https://doi.org/10.1007/s10040-006-0021-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10230-016-0407-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011701602
136 https://doi.org/10.1007/s10230-016-0407-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10706-016-0156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250618
139 https://doi.org/10.1007/s10706-016-0156-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12665-009-0376-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025999044
142 https://doi.org/10.1007/s12665-009-0376-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s12665-014-3541-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003705546
145 https://doi.org/10.1007/s12665-014-3541-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12665-015-4219-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039292717
148 https://doi.org/10.1007/s12665-015-4219-8
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12665-018-7389-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101394845
151 https://doi.org/10.1007/s12665-018-7389-3
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.apacoust.2014.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511800
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.apradiso.2017.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090386470
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.coal.2009.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649291
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cretres.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010732999
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jappgeo.2016.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289178
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jhydrol.2018.09.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107318719
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jsg.2006.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053663511
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.marpetgeo.2014.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000456110
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.palaeo.2012.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032129756
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.tecto.2012.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039478848
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0013-7952(99)00085-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046505435
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0167-6393(97)00054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020199241
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1006-1266(08)60301-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039394945
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1029/2006gl028050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032873202
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1061/(asce)0733-9364(2000)126:1(68) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057575525
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1080/01431169508954501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014096178
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1090/s0025-5718-1965-0178586-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000912574
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/proc.1977.10770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443791
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1365-2478.1987.tb00838.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030464416
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1161/01.cir.69.4.711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050057854
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1190/geo2012-0125.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000782107
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1190/geo2012-0407.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035064880
196 rdf:type schema:CreativeWork
197 https://doi.org/10.13168/agg.2014.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065005384
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1364/ol.16.001198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065213313
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2118/134011-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068949701
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3390/w10101409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107538800
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.440661.1 schema:alternateName Chang'an University
206 schema:name School of Environmental Science and Engineering, Chang’an University, 710054, Xi’an, Shaanxi, China
207 Shaanxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, 710077, Xi’an, Shaanxi, China
208 Xi’an Research Institute Company of China Coal Technology and Engineering Group, 710054, Xi’an, Shaanxi, China
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...