Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Tamiris Chahm, Bruna Aparecida Martins, Clovis Antonio Rodrigues

ABSTRACT

This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2 = 0.9685) and MB (R2 = 0.9832) for WRf and CV (R2 = 0.9685) and CV (R2 = 0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV. More... »

PAGES

508

References to SciGraph publications

  • 2018-05. Adsorption of Cationic Dyes Using Waste from Fruits of Eugenia umbelliflora Berg (Myrtaceae) in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • 2016-02. Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies in ENVIRONMENTAL EARTH SCIENCES
  • 2015-04. Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetics studies in ENVIRONMENTAL EARTH SCIENCES
  • 2017-08. Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2015-09. Adsorption of anionic azo dye from aqueous solution using Strychnos potatorum Linn seeds: isotherm and kinetic studies in INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
  • 2017-10. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions in APPLIED WATER SCIENCE
  • 2017-02. Developing a biosorbent from Aegle Marmelos leaves for removal of methylene blue from water in INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
  • 2018-03. Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study in ENVIRONMENTAL EARTH SCIENCES
  • 2017-04. Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2004-06. Pseudo-Isotherms Using a Second Order Kinetic Expression Constant in ADSORPTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12665-018-7681-2

    DOI

    http://dx.doi.org/10.1007/s12665-018-7681-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105292957


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidade do Vale do Itaja\u00ed", 
              "id": "https://www.grid.ac/institutes/grid.412299.5", 
              "name": [
                "N\u00facleo de Investiga\u00e7\u00f5es Qu\u00edmico-Farmac\u00eauticas (NIQFAR), Universidade do Vale do Itaja\u00ed (UNIVALI), 88302-202, Itaja\u00ed, Santa Catarina, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chahm", 
            "givenName": "Tamiris", 
            "id": "sg:person.013773143165.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773143165.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade do Vale do Itaja\u00ed", 
              "id": "https://www.grid.ac/institutes/grid.412299.5", 
              "name": [
                "N\u00facleo de Investiga\u00e7\u00f5es Qu\u00edmico-Farmac\u00eauticas (NIQFAR), Universidade do Vale do Itaja\u00ed (UNIVALI), 88302-202, Itaja\u00ed, Santa Catarina, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martins", 
            "givenName": "Bruna Aparecida", 
            "id": "sg:person.014705401226.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014705401226.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade do Vale do Itaja\u00ed", 
              "id": "https://www.grid.ac/institutes/grid.412299.5", 
              "name": [
                "N\u00facleo de Investiga\u00e7\u00f5es Qu\u00edmico-Farmac\u00eauticas (NIQFAR), Universidade do Vale do Itaja\u00ed (UNIVALI), 88302-202, Itaja\u00ed, Santa Catarina, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodrigues", 
            "givenName": "Clovis Antonio", 
            "id": "sg:person.01355607637.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355607637.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.micromeso.2016.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000008262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.colsurfa.2014.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000073385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2015.1052990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003058812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/ns.2012.41004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003554323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jes.2016.08.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004397705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2016.01.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005290951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2014.905976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006212499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jscs.2012.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006773342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jenvman.2016.07.090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010126673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09593330.2016.1214623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010991084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2015.1004115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011360351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2015.1119737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013431041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apcatb.2016.08.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013970109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoenv.2015.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016000278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:adso.0000039870.28835.09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018349207", 
              "https://doi.org/10.1023/b:adso.0000039870.28835.09"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2005.12.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022200313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-016-7698-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026981961", 
              "https://doi.org/10.1007/s11356-016-7698-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-016-7698-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026981961", 
              "https://doi.org/10.1007/s11356-016-7698-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-014-3616-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027346144", 
              "https://doi.org/10.1007/s12665-014-3616-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1478-4408.2012.00365.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027511540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ep.12334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027971432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2016.12.096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029578407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jiec.2013.10.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029877899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-014-0668-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029988997", 
              "https://doi.org/10.1007/s13762-014-0668-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2016.08.199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029993905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ep.12466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030250439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ep.11756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030669877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2015.1066272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032429231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2016.11.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032921201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.colsurfa.2004.03.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035089704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.psep.2016.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036354364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jece.2016.04.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036865537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2016.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036902129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtice.2015.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037432233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2015.12.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039003141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19443994.2015.1016460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039996911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2015.10.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2015.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041058130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-016-1150-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042108302", 
              "https://doi.org/10.1007/s13762-016-1150-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-016-1150-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042108302", 
              "https://doi.org/10.1007/s13762-016-1150-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2016.12.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044186080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2015.03.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044339328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5255-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046993251", 
              "https://doi.org/10.1007/s12665-016-5255-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtice.2015.02.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047171285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.arabjc.2012.07.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050263890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.psep.2017.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053892018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01496395.2017.1282965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083924900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-017-0542-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084036658", 
              "https://doi.org/10.1007/s13201-017-0542-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-017-0542-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084036658", 
              "https://doi.org/10.1007/s13201-017-0542-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtice.2017.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084093240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.04.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084996463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.psep.2017.04.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085123742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5902/198050981659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085545209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-9365-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090384743", 
              "https://doi.org/10.1007/s11356-017-9365-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-9365-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090384743", 
              "https://doi.org/10.1007/s11356-017-9365-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.powtec.2017.08.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091102393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-017-2819-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091886759", 
              "https://doi.org/10.1007/s13369-017-2819-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01496395.2017.1414846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099926041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-018-7342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101406313", 
              "https://doi.org/10.1007/s12665-018-7342-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-018-7342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101406313", 
              "https://doi.org/10.1007/s12665-018-7342-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-018-7342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101406313", 
              "https://doi.org/10.1007/s12665-018-7342-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2\u201312), contact time (up to 120 min) and initial concentration (20\u2013120 mg/L), and temperature (25, 35, and 55 \u00b0C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box\u2013Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2 = 0.9685) and MB (R2 = 0.9832) for WRf and CV (R2 = 0.9685) and CV (R2 = 0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12665-018-7681-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1346438", 
            "issn": [
              "1866-6280", 
              "1866-6299"
            ], 
            "name": "Environmental Earth Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "13", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "name": "Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated)", 
        "pagination": "508", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5592200a5f248ad060522db6af4932fe647d7a71144c23c6184570931454e2b7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12665-018-7681-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105292957"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12665-018-7681-2", 
          "https://app.dimensions.ai/details/publication/pub.1105292957"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12665-018-7681-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7681-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7681-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7681-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7681-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    250 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12665-018-7681-2 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N2bd061d47b1946e1aa78c9655d2d6e54
    4 schema:citation sg:pub.10.1007/s11356-016-7698-6
    5 sg:pub.10.1007/s11356-017-9365-y
    6 sg:pub.10.1007/s12665-014-3616-8
    7 sg:pub.10.1007/s12665-016-5255-8
    8 sg:pub.10.1007/s12665-018-7342-5
    9 sg:pub.10.1007/s13201-017-0542-4
    10 sg:pub.10.1007/s13369-017-2819-1
    11 sg:pub.10.1007/s13762-014-0668-y
    12 sg:pub.10.1007/s13762-016-1150-9
    13 sg:pub.10.1023/b:adso.0000039870.28835.09
    14 https://doi.org/10.1002/ep.11756
    15 https://doi.org/10.1002/ep.12334
    16 https://doi.org/10.1002/ep.12466
    17 https://doi.org/10.1016/j.apcatb.2016.08.037
    18 https://doi.org/10.1016/j.arabjc.2012.07.030
    19 https://doi.org/10.1016/j.biortech.2016.01.006
    20 https://doi.org/10.1016/j.biortech.2017.04.066
    21 https://doi.org/10.1016/j.cej.2015.10.099
    22 https://doi.org/10.1016/j.colsurfa.2004.03.029
    23 https://doi.org/10.1016/j.colsurfa.2014.06.014
    24 https://doi.org/10.1016/j.ecoenv.2015.11.012
    25 https://doi.org/10.1016/j.jece.2016.04.020
    26 https://doi.org/10.1016/j.jenvman.2016.07.090
    27 https://doi.org/10.1016/j.jes.2016.08.012
    28 https://doi.org/10.1016/j.jhazmat.2005.12.043
    29 https://doi.org/10.1016/j.jhazmat.2015.03.018
    30 https://doi.org/10.1016/j.jhazmat.2016.11.036
    31 https://doi.org/10.1016/j.jiec.2013.10.039
    32 https://doi.org/10.1016/j.jscs.2012.09.014
    33 https://doi.org/10.1016/j.jtice.2015.02.025
    34 https://doi.org/10.1016/j.jtice.2015.07.006
    35 https://doi.org/10.1016/j.jtice.2017.01.016
    36 https://doi.org/10.1016/j.matdes.2015.11.004
    37 https://doi.org/10.1016/j.micromeso.2016.10.004
    38 https://doi.org/10.1016/j.molliq.2015.12.065
    39 https://doi.org/10.1016/j.molliq.2016.12.059
    40 https://doi.org/10.1016/j.molliq.2016.12.096
    41 https://doi.org/10.1016/j.powtec.2017.08.023
    42 https://doi.org/10.1016/j.psep.2016.02.012
    43 https://doi.org/10.1016/j.psep.2017.01.010
    44 https://doi.org/10.1016/j.psep.2017.04.024
    45 https://doi.org/10.1016/j.scitotenv.2016.08.199
    46 https://doi.org/10.1016/j.watres.2016.01.031
    47 https://doi.org/10.1080/01496395.2017.1282965
    48 https://doi.org/10.1080/01496395.2017.1414846
    49 https://doi.org/10.1080/09593330.2016.1214623
    50 https://doi.org/10.1080/19443994.2014.905976
    51 https://doi.org/10.1080/19443994.2015.1004115
    52 https://doi.org/10.1080/19443994.2015.1016460
    53 https://doi.org/10.1080/19443994.2015.1052990
    54 https://doi.org/10.1080/19443994.2015.1066272
    55 https://doi.org/10.1080/19443994.2015.1119737
    56 https://doi.org/10.1111/j.1478-4408.2012.00365.x
    57 https://doi.org/10.4236/ns.2012.41004
    58 https://doi.org/10.5902/198050981659
    59 schema:datePublished 2018-07
    60 schema:datePublishedReg 2018-07-01
    61 schema:description This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2 = 0.9685) and MB (R2 = 0.9832) for WRf and CV (R2 = 0.9685) and CV (R2 = 0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree false
    65 schema:isPartOf N88709d99f4894787a253b23f4f4579c9
    66 Naa5a5b7dfd164eafb5ea76eb05f127a6
    67 sg:journal.1346438
    68 schema:name Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated)
    69 schema:pagination 508
    70 schema:productId N4781f863e67143b3a95dbffa8eb7af1f
    71 N502a362eeb434a6eb2aedeeadd8b1c7f
    72 N5481d266ad9f48209801187f52b588dd
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105292957
    74 https://doi.org/10.1007/s12665-018-7681-2
    75 schema:sdDatePublished 2019-04-11T10:03
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Ne1055a7ff37e46c9b2642468fe996034
    78 schema:url https://link.springer.com/10.1007%2Fs12665-018-7681-2
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N2bd061d47b1946e1aa78c9655d2d6e54 rdf:first sg:person.013773143165.28
    83 rdf:rest N86b2acaf7f864387a9b94c4cb47c676f
    84 N4781f863e67143b3a95dbffa8eb7af1f schema:name readcube_id
    85 schema:value 5592200a5f248ad060522db6af4932fe647d7a71144c23c6184570931454e2b7
    86 rdf:type schema:PropertyValue
    87 N502a362eeb434a6eb2aedeeadd8b1c7f schema:name doi
    88 schema:value 10.1007/s12665-018-7681-2
    89 rdf:type schema:PropertyValue
    90 N5481d266ad9f48209801187f52b588dd schema:name dimensions_id
    91 schema:value pub.1105292957
    92 rdf:type schema:PropertyValue
    93 N86b2acaf7f864387a9b94c4cb47c676f rdf:first sg:person.014705401226.24
    94 rdf:rest N874e6d569b204583b6863648f5d805fe
    95 N874e6d569b204583b6863648f5d805fe rdf:first sg:person.01355607637.03
    96 rdf:rest rdf:nil
    97 N88709d99f4894787a253b23f4f4579c9 schema:volumeNumber 77
    98 rdf:type schema:PublicationVolume
    99 Naa5a5b7dfd164eafb5ea76eb05f127a6 schema:issueNumber 13
    100 rdf:type schema:PublicationIssue
    101 Ne1055a7ff37e46c9b2642468fe996034 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Chemical Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Physical Chemistry (incl. Structural)
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1346438 schema:issn 1866-6280
    110 1866-6299
    111 schema:name Environmental Earth Sciences
    112 rdf:type schema:Periodical
    113 sg:person.01355607637.03 schema:affiliation https://www.grid.ac/institutes/grid.412299.5
    114 schema:familyName Rodrigues
    115 schema:givenName Clovis Antonio
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355607637.03
    117 rdf:type schema:Person
    118 sg:person.013773143165.28 schema:affiliation https://www.grid.ac/institutes/grid.412299.5
    119 schema:familyName Chahm
    120 schema:givenName Tamiris
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773143165.28
    122 rdf:type schema:Person
    123 sg:person.014705401226.24 schema:affiliation https://www.grid.ac/institutes/grid.412299.5
    124 schema:familyName Martins
    125 schema:givenName Bruna Aparecida
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014705401226.24
    127 rdf:type schema:Person
    128 sg:pub.10.1007/s11356-016-7698-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981961
    129 https://doi.org/10.1007/s11356-016-7698-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11356-017-9365-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090384743
    132 https://doi.org/10.1007/s11356-017-9365-y
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s12665-014-3616-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027346144
    135 https://doi.org/10.1007/s12665-014-3616-8
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s12665-016-5255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046993251
    138 https://doi.org/10.1007/s12665-016-5255-8
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s12665-018-7342-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101406313
    141 https://doi.org/10.1007/s12665-018-7342-5
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s13201-017-0542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084036658
    144 https://doi.org/10.1007/s13201-017-0542-4
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s13369-017-2819-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091886759
    147 https://doi.org/10.1007/s13369-017-2819-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s13762-014-0668-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029988997
    150 https://doi.org/10.1007/s13762-014-0668-y
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s13762-016-1150-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042108302
    153 https://doi.org/10.1007/s13762-016-1150-9
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/b:adso.0000039870.28835.09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018349207
    156 https://doi.org/10.1023/b:adso.0000039870.28835.09
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1002/ep.11756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030669877
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1002/ep.12334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027971432
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/ep.12466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250439
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.apcatb.2016.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013970109
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.arabjc.2012.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050263890
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.biortech.2016.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036902129
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.biortech.2017.04.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084996463
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.cej.2015.10.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245039
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.colsurfa.2004.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035089704
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.colsurfa.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000073385
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.ecoenv.2015.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016000278
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.jece.2016.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036865537
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.jenvman.2016.07.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010126673
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.jes.2016.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004397705
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.jhazmat.2005.12.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022200313
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.jhazmat.2015.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044339328
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.jhazmat.2016.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032921201
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.jiec.2013.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029877899
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.jscs.2012.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006773342
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.jtice.2015.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047171285
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.jtice.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037432233
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.jtice.2017.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084093240
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.matdes.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041058130
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.micromeso.2016.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008262
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.molliq.2015.12.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039003141
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.molliq.2016.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044186080
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.molliq.2016.12.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029578407
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.powtec.2017.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091102393
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.psep.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036354364
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.psep.2017.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053892018
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.psep.2017.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085123742
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.scitotenv.2016.08.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029993905
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.watres.2016.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005290951
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1080/01496395.2017.1282965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083924900
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1080/01496395.2017.1414846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099926041
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1080/09593330.2016.1214623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010991084
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1080/19443994.2014.905976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006212499
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1080/19443994.2015.1004115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011360351
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1080/19443994.2015.1016460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039996911
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1080/19443994.2015.1052990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003058812
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1080/19443994.2015.1066272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032429231
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/19443994.2015.1119737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431041
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1111/j.1478-4408.2012.00365.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027511540
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.4236/ns.2012.41004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003554323
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.5902/198050981659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085545209
    247 rdf:type schema:CreativeWork
    248 https://www.grid.ac/institutes/grid.412299.5 schema:alternateName Universidade do Vale do Itajaí
    249 schema:name Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), 88302-202, Itajaí, Santa Catarina, Brazil
    250 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...