Ontology type: schema:ScholarlyArticle
2018-02-10
AUTHORSMohammad Sayemuzzaman, Ming Ye, Fan Zhang, Mingming Zhu
ABSTRACTThe Indian River Lagoon (IRL) estuary system is of concern to environmental scientists, because its water quality has been deteriorating in the past several decades. To understand spatial variability and temporal changes of surface water quality in the central IRL area, cluster analysis, principle component analysis, and nonparametric trend analysis were conducted for a dataset of 27,648 observations, collected for twelve parameters of surface water quality over the period of 1998–2013 at twelve monitoring stations. The cluster analysis separated the data into four groups, which are closely related to the locations of the monitoring stations. The principal component analysis was applied to each of the four groups to determine the important water quality parameters. In each group, five principal components explain 75–85% of the total data variance, and the components include the following water quality parameters: nutrient species (nitrogen and phosphorus), physicochemical parameters (salinity, specific conductivity, pH, and DO), and erosion factors (total suspended solids and turbidity). Statistically significant trends in these water quality parameters were detected by applying the Mann–Kendall trend test, and abrupt trend shifts were detected by applying the sequential Mann–Kendall trend test. The trends and trend shifts are attributed to land use changes, projects of lagoon restoration, and the 2006 drought conditions in the study area. The results of this study can be of direct use to management projects for improving surface water quality at the central IRL area. More... »
PAGES127
http://scigraph.springernature.com/pub.10.1007/s12665-018-7266-0
DOIhttp://dx.doi.org/10.1007/s12665-018-7266-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1100960750
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Civil Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Draper Aden Associates, Richmond, VA, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Scientific Computing, Florida State University, Tallahassee, FL, USA",
"Draper Aden Associates, Richmond, VA, USA"
],
"type": "Organization"
},
"familyName": "Sayemuzzaman",
"givenName": "Mohammad",
"id": "sg:person.010274724023.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274724023.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.255986.5",
"name": [
"School of Computer Science and Software Engineering, Tianjin Polytechnic University, 300387, Tianjin, China",
"Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Ye",
"givenName": "Ming",
"id": "sg:person.016425122141.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.458451.9",
"name": [
"Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Fan",
"id": "sg:person.016037364413.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037364413.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center of Hydraulic Engineering Regulation and Management, Jinzhou Waterwork Office, 121013, Jinzhou, Liaoning, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Center of Hydraulic Engineering Regulation and Management, Jinzhou Waterwork Office, 121013, Jinzhou, Liaoning, China"
],
"type": "Organization"
},
"familyName": "Zhu",
"givenName": "Mingming",
"id": "sg:person.016610352174.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610352174.36"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00704-014-1147-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046967175",
"https://doi.org/10.1007/s00704-014-1147-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-03167-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042385705",
"https://doi.org/10.1007/978-3-662-03167-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002679910016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012596761",
"https://doi.org/10.1007/s002679910016"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10661-010-1633-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035758069",
"https://doi.org/10.1007/s10661-010-1633-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-02-10",
"datePublishedReg": "2018-02-10",
"description": "The Indian River Lagoon (IRL) estuary system is of concern to environmental scientists, because its water quality has been deteriorating in the past several decades. To understand spatial variability and temporal changes of surface water quality in the central IRL area, cluster analysis, principle component analysis, and nonparametric trend analysis were conducted for a dataset of 27,648 observations, collected for twelve parameters of surface water quality over the period of 1998\u20132013 at twelve monitoring stations. The cluster analysis separated the data into four groups, which are closely related to the locations of the monitoring stations. The principal component analysis was applied to each of the four groups to determine the important water quality parameters. In each group, five principal components explain 75\u201385% of the total data variance, and the components include the following water quality parameters: nutrient species (nitrogen and phosphorus), physicochemical parameters (salinity, specific conductivity, pH, and DO), and erosion factors (total suspended solids and turbidity). Statistically significant trends in these water quality parameters were detected by applying the Mann\u2013Kendall trend test, and abrupt trend shifts were detected by applying the sequential Mann\u2013Kendall trend test. The trends and trend shifts are attributed to land use changes, projects of lagoon restoration, and the 2006 drought conditions in the study area. The results of this study can be of direct use to management projects for improving surface water quality at the central IRL area.",
"genre": "article",
"id": "sg:pub.10.1007/s12665-018-7266-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1413001",
"issn": [
"1866-6280",
"1866-6299"
],
"name": "Environmental Earth Sciences",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "77"
}
],
"keywords": [
"surface water quality",
"Mann-Kendall trend test",
"water quality parameters",
"water quality",
"sequential Mann\u2013Kendall trend test",
"monitoring stations",
"trend test",
"trend shift",
"nonparametric trend analysis",
"important water quality parameters",
"total data variance",
"land use change",
"lagoon restoration",
"estuary system",
"lagoon area",
"quality parameters",
"spatial variability",
"erosion factors",
"nutrient species",
"study area",
"use change",
"drought conditions",
"trend analysis",
"significant trend",
"temporal changes",
"cluster analysis",
"data variance",
"physicochemical parameters",
"environmental scientists",
"component analysis",
"stations",
"principal component analysis",
"management projects",
"area",
"principal components",
"principle component analysis",
"trends",
"variability",
"direct use",
"Florida",
"changes",
"shift",
"location",
"period",
"dataset",
"restoration",
"species",
"components",
"project",
"analysis",
"parameters",
"decades",
"data",
"quality",
"conditions",
"scientists",
"variance",
"concern",
"results",
"system",
"study",
"use",
"factors",
"observations",
"group",
"test"
],
"name": "Multivariate statistical and trend analyses of surface water quality in the central Indian River Lagoon area, Florida",
"pagination": "127",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1100960750"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12665-018-7266-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12665-018-7266-0",
"https://app.dimensions.ai/details/publication/pub.1100960750"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_777.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12665-018-7266-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7266-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7266-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7266-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-018-7266-0'
This table displays all metadata directly associated to this object as RDF triples.
183 TRIPLES
22 PREDICATES
98 URIs
83 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12665-018-7266-0 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0403 |
3 | ″ | ″ | anzsrc-for:0406 |
4 | ″ | ″ | anzsrc-for:09 |
5 | ″ | ″ | anzsrc-for:0905 |
6 | ″ | schema:author | Ncac854f002b7473cb6f2ad630b3fdc02 |
7 | ″ | schema:citation | sg:pub.10.1007/978-3-662-03167-4 |
8 | ″ | ″ | sg:pub.10.1007/s002679910016 |
9 | ″ | ″ | sg:pub.10.1007/s00704-014-1147-6 |
10 | ″ | ″ | sg:pub.10.1007/s10661-010-1633-y |
11 | ″ | schema:datePublished | 2018-02-10 |
12 | ″ | schema:datePublishedReg | 2018-02-10 |
13 | ″ | schema:description | The Indian River Lagoon (IRL) estuary system is of concern to environmental scientists, because its water quality has been deteriorating in the past several decades. To understand spatial variability and temporal changes of surface water quality in the central IRL area, cluster analysis, principle component analysis, and nonparametric trend analysis were conducted for a dataset of 27,648 observations, collected for twelve parameters of surface water quality over the period of 1998–2013 at twelve monitoring stations. The cluster analysis separated the data into four groups, which are closely related to the locations of the monitoring stations. The principal component analysis was applied to each of the four groups to determine the important water quality parameters. In each group, five principal components explain 75–85% of the total data variance, and the components include the following water quality parameters: nutrient species (nitrogen and phosphorus), physicochemical parameters (salinity, specific conductivity, pH, and DO), and erosion factors (total suspended solids and turbidity). Statistically significant trends in these water quality parameters were detected by applying the Mann–Kendall trend test, and abrupt trend shifts were detected by applying the sequential Mann–Kendall trend test. The trends and trend shifts are attributed to land use changes, projects of lagoon restoration, and the 2006 drought conditions in the study area. The results of this study can be of direct use to management projects for improving surface water quality at the central IRL area. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | N2728374cf70f4cabb16c1903b6bd18e1 |
18 | ″ | ″ | Na3cb7dffa7704c1f984908f2fd6202a1 |
19 | ″ | ″ | sg:journal.1413001 |
20 | ″ | schema:keywords | Florida |
21 | ″ | ″ | Mann-Kendall trend test |
22 | ″ | ″ | analysis |
23 | ″ | ″ | area |
24 | ″ | ″ | changes |
25 | ″ | ″ | cluster analysis |
26 | ″ | ″ | component analysis |
27 | ″ | ″ | components |
28 | ″ | ″ | concern |
29 | ″ | ″ | conditions |
30 | ″ | ″ | data |
31 | ″ | ″ | data variance |
32 | ″ | ″ | dataset |
33 | ″ | ″ | decades |
34 | ″ | ″ | direct use |
35 | ″ | ″ | drought conditions |
36 | ″ | ″ | environmental scientists |
37 | ″ | ″ | erosion factors |
38 | ″ | ″ | estuary system |
39 | ″ | ″ | factors |
40 | ″ | ″ | group |
41 | ″ | ″ | important water quality parameters |
42 | ″ | ″ | lagoon area |
43 | ″ | ″ | lagoon restoration |
44 | ″ | ″ | land use change |
45 | ″ | ″ | location |
46 | ″ | ″ | management projects |
47 | ″ | ″ | monitoring stations |
48 | ″ | ″ | nonparametric trend analysis |
49 | ″ | ″ | nutrient species |
50 | ″ | ″ | observations |
51 | ″ | ″ | parameters |
52 | ″ | ″ | period |
53 | ″ | ″ | physicochemical parameters |
54 | ″ | ″ | principal component analysis |
55 | ″ | ″ | principal components |
56 | ″ | ″ | principle component analysis |
57 | ″ | ″ | project |
58 | ″ | ″ | quality |
59 | ″ | ″ | quality parameters |
60 | ″ | ″ | restoration |
61 | ″ | ″ | results |
62 | ″ | ″ | scientists |
63 | ″ | ″ | sequential Mann–Kendall trend test |
64 | ″ | ″ | shift |
65 | ″ | ″ | significant trend |
66 | ″ | ″ | spatial variability |
67 | ″ | ″ | species |
68 | ″ | ″ | stations |
69 | ″ | ″ | study |
70 | ″ | ″ | study area |
71 | ″ | ″ | surface water quality |
72 | ″ | ″ | system |
73 | ″ | ″ | temporal changes |
74 | ″ | ″ | test |
75 | ″ | ″ | total data variance |
76 | ″ | ″ | trend analysis |
77 | ″ | ″ | trend shift |
78 | ″ | ″ | trend test |
79 | ″ | ″ | trends |
80 | ″ | ″ | use |
81 | ″ | ″ | use change |
82 | ″ | ″ | variability |
83 | ″ | ″ | variance |
84 | ″ | ″ | water quality |
85 | ″ | ″ | water quality parameters |
86 | ″ | schema:name | Multivariate statistical and trend analyses of surface water quality in the central Indian River Lagoon area, Florida |
87 | ″ | schema:pagination | 127 |
88 | ″ | schema:productId | N22215362c9a3485d8cccd6d7ffee0553 |
89 | ″ | ″ | Nf49610a3c30a40fca3fc252fd2fb6b43 |
90 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1100960750 |
91 | ″ | ″ | https://doi.org/10.1007/s12665-018-7266-0 |
92 | ″ | schema:sdDatePublished | 2022-05-10T10:18 |
93 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
94 | ″ | schema:sdPublisher | Neb1e53d9711b4ae7bdadfdeb3a08fba2 |
95 | ″ | schema:url | https://doi.org/10.1007/s12665-018-7266-0 |
96 | ″ | sgo:license | sg:explorer/license/ |
97 | ″ | sgo:sdDataset | articles |
98 | ″ | rdf:type | schema:ScholarlyArticle |
99 | N22215362c9a3485d8cccd6d7ffee0553 | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1100960750 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N25e24dcb067946d882f945bc025e010b | rdf:first | sg:person.016425122141.09 |
103 | ″ | rdf:rest | N65a2e51a96ef4c9d964ee8dd7b2d7658 |
104 | N2728374cf70f4cabb16c1903b6bd18e1 | schema:volumeNumber | 77 |
105 | ″ | rdf:type | schema:PublicationVolume |
106 | N65a2e51a96ef4c9d964ee8dd7b2d7658 | rdf:first | sg:person.016037364413.86 |
107 | ″ | rdf:rest | Na15430f8b5404eee893aaf85f830e63e |
108 | Na15430f8b5404eee893aaf85f830e63e | rdf:first | sg:person.016610352174.36 |
109 | ″ | rdf:rest | rdf:nil |
110 | Na3cb7dffa7704c1f984908f2fd6202a1 | schema:issueNumber | 4 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | Ncac854f002b7473cb6f2ad630b3fdc02 | rdf:first | sg:person.010274724023.10 |
113 | ″ | rdf:rest | N25e24dcb067946d882f945bc025e010b |
114 | Neb1e53d9711b4ae7bdadfdeb3a08fba2 | schema:name | Springer Nature - SN SciGraph project |
115 | ″ | rdf:type | schema:Organization |
116 | Nf49610a3c30a40fca3fc252fd2fb6b43 | schema:name | doi |
117 | ″ | schema:value | 10.1007/s12665-018-7266-0 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Earth Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0403 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Geology |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Physical Geography and Environmental Geoscience |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Engineering |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | anzsrc-for:0905 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Civil Engineering |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | sg:journal.1413001 | schema:issn | 1866-6280 |
135 | ″ | ″ | 1866-6299 |
136 | ″ | schema:name | Environmental Earth Sciences |
137 | ″ | schema:publisher | Springer Nature |
138 | ″ | rdf:type | schema:Periodical |
139 | sg:person.010274724023.10 | schema:affiliation | grid-institutes:None |
140 | ″ | schema:familyName | Sayemuzzaman |
141 | ″ | schema:givenName | Mohammad |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274724023.10 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.016037364413.86 | schema:affiliation | grid-institutes:grid.458451.9 |
145 | ″ | schema:familyName | Zhang |
146 | ″ | schema:givenName | Fan |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037364413.86 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.016425122141.09 | schema:affiliation | grid-institutes:grid.255986.5 |
150 | ″ | schema:familyName | Ye |
151 | ″ | schema:givenName | Ming |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.016610352174.36 | schema:affiliation | grid-institutes:None |
155 | ″ | schema:familyName | Zhu |
156 | ″ | schema:givenName | Mingming |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610352174.36 |
158 | ″ | rdf:type | schema:Person |
159 | sg:pub.10.1007/978-3-662-03167-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042385705 |
160 | ″ | ″ | https://doi.org/10.1007/978-3-662-03167-4 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | sg:pub.10.1007/s002679910016 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012596761 |
163 | ″ | ″ | https://doi.org/10.1007/s002679910016 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1007/s00704-014-1147-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046967175 |
166 | ″ | ″ | https://doi.org/10.1007/s00704-014-1147-6 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1007/s10661-010-1633-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035758069 |
169 | ″ | ″ | https://doi.org/10.1007/s10661-010-1633-y |
170 | ″ | rdf:type | schema:CreativeWork |
171 | grid-institutes:None | schema:alternateName | Center of Hydraulic Engineering Regulation and Management, Jinzhou Waterwork Office, 121013, Jinzhou, Liaoning, China |
172 | ″ | ″ | Draper Aden Associates, Richmond, VA, USA |
173 | ″ | schema:name | Center of Hydraulic Engineering Regulation and Management, Jinzhou Waterwork Office, 121013, Jinzhou, Liaoning, China |
174 | ″ | ″ | Department of Scientific Computing, Florida State University, Tallahassee, FL, USA |
175 | ″ | ″ | Draper Aden Associates, Richmond, VA, USA |
176 | ″ | rdf:type | schema:Organization |
177 | grid-institutes:grid.255986.5 | schema:alternateName | Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA |
178 | ″ | schema:name | Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA |
179 | ″ | ″ | School of Computer Science and Software Engineering, Tianjin Polytechnic University, 300387, Tianjin, China |
180 | ″ | rdf:type | schema:Organization |
181 | grid-institutes:grid.458451.9 | schema:alternateName | Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China |
182 | ″ | schema:name | Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China |
183 | ″ | rdf:type | schema:Organization |