Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

T. V. Swetha, Girish Gopinath, K. P. Thrivikramji, N. P. Jesiya

ABSTRACT

The efficiency of GIS, RS and multi-criteria tools in isolating potential groundwater (GW) zones in the Kuttiyadi River basin (KRB), Kerala, has been robustly demonstrated by analysis of relevant data. To infer geohydrological makeup and consequent behavior of the KRB in respect of GW potential, firstly, various thematic layers viz. geomorphology, geology, slope, soil, lineament density and drainage density, were created. Secondly, thematic layers and their features were assigned suitable weights on the Saaty’s scale according to their relative significance for the presence and potential of GW. The assigned weights of the layers and their features were normalized using analytic network process method, and then the selected thematic maps were integrated in GIS using weighted overlay method to create the final groundwater prospect zone map. From the outcomes, the groundwater prospect zones of the KRB basin was found to be very good (166.21 km2), good (92.01 km2), moderate (180.33 km2), poor (237.25 km2), which constitute 24, 15, 26 and 35% of the study area, respectively. The GW prospect zone map was finally validated using geohydrology of area and GW level data from 43 phreatic wells in the study area. This study showed that groundwater prospect zone demarcation along with multi-criteria decision making is a powerful tool for proper utilization, planning and management of the precious groundwater resource. More... »

PAGES

428

References to SciGraph publications

  • 2014-04. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique in ARABIAN JOURNAL OF GEOSCIENCES
  • 2016-02. Watershed prioritization based on morphometric analysis coupled with multi criteria decision making in ARABIAN JOURNAL OF GEOSCIENCES
  • 2004-12. Identification of groundwater prospective zones using irs-id liss iii and pump test methods in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 1991-09. Geomorphological units, their geohydrological characteristic and vertical electrical sounding response near Munger, Bihar in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2007-02. Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints in WATER RESOURCES MANAGEMENT
  • 2001-03. Identification of Groundwater Potential Zones Using Remote Sensing Techniques In and Around Guntur Town, Andhra Pradesh, India in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2011-03. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques in WATER RESOURCES MANAGEMENT
  • 2016-09. Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique in WATER RESOURCES MANAGEMENT
  • 2016-10. Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques in JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
  • 2014-10. Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones in WATER RESOURCES MANAGEMENT
  • 2001-09. A Geographic Information System approach to evaluation of groundwater potentiality of Shamri micro-watershed in the Shimla Taluk, Himachal Pradesh in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2010-01. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques in ENVIRONMENTAL EARTH SCIENCES
  • 2013-06. Delineation of groundwater potential zone: An AHP/ANP approach in JOURNAL OF EARTH SYSTEM SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12665-017-6749-8

    DOI

    http://dx.doi.org/10.1007/s12665-017-6749-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086100734


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre for Water Resources Development and Management", 
              "id": "https://www.grid.ac/institutes/grid.464826.a", 
              "name": [
                "Centre for Water Resources Development and Management, 673571, Kozhikode, Kerala, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Swetha", 
            "givenName": "T. V.", 
            "id": "sg:person.016342114527.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342114527.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for Water Resources Development and Management", 
              "id": "https://www.grid.ac/institutes/grid.464826.a", 
              "name": [
                "Centre for Water Resources Development and Management, 673571, Kozhikode, Kerala, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gopinath", 
            "givenName": "Girish", 
            "id": "sg:person.010300231111.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300231111.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Center for Environment and Development, 695013, Thiruvananthapuram, Kerala, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thrivikramji", 
            "givenName": "K. P.", 
            "id": "sg:person.016025002051.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025002051.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for Water Resources Development and Management", 
              "id": "https://www.grid.ac/institutes/grid.464826.a", 
              "name": [
                "Centre for Water Resources Development and Management, 673571, Kozhikode, Kerala, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jesiya", 
            "givenName": "N. P.", 
            "id": "sg:person.010051322706.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010051322706.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03030772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000324945", 
              "https://doi.org/10.1007/bf03030772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/16469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001660614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jseaes.2006.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003791710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02989927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005353969", 
              "https://doi.org/10.1007/bf02989927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02989927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005353969", 
              "https://doi.org/10.1007/bf02989927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-016-0511-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008576019", 
              "https://doi.org/10.1007/s12594-016-0511-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-016-0511-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008576019", 
              "https://doi.org/10.1007/s12594-016-0511-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1421-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631892", 
              "https://doi.org/10.1007/s11269-016-1421-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1421-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631892", 
              "https://doi.org/10.1007/s11269-016-1421-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12040-013-0309-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013383113", 
              "https://doi.org/10.1007/s12040-013-0309-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03030858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020445137", 
              "https://doi.org/10.1007/bf03030858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02989916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021608234", 
              "https://doi.org/10.1007/bf02989916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02989916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021608234", 
              "https://doi.org/10.1007/bf02989916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-006-9024-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022386377", 
              "https://doi.org/10.1007/s11269-006-9024-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/tr013i001p00350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023388248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-2238-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030525609", 
              "https://doi.org/10.1007/s12517-015-2238-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-013-0849-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031551314", 
              "https://doi.org/10.1007/s12517-013-0849-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-009-0110-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034864819", 
              "https://doi.org/10.1007/s12665-009-0110-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-009-0110-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034864819", 
              "https://doi.org/10.1007/s12665-009-0110-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-014-0663-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036883713", 
              "https://doi.org/10.1007/s11269-014-0663-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160601086050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042973831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-010-9749-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050192124", 
              "https://doi.org/10.1007/s11269-010-9749-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/yjor1001071g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053003083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7763/ijimt.2013.v4.395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074037524"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "The efficiency of GIS, RS and multi-criteria tools in isolating potential groundwater (GW) zones in the Kuttiyadi River basin (KRB), Kerala, has been robustly demonstrated by analysis of relevant data. To infer geohydrological makeup and consequent behavior of the KRB in respect of GW potential, firstly, various thematic layers viz. geomorphology, geology, slope, soil, lineament density and drainage density, were created. Secondly, thematic layers and their features were assigned suitable weights on the Saaty\u2019s scale according to their relative significance for the presence and potential of GW. The assigned weights of the layers and their features were normalized using analytic network process method, and then the selected thematic maps were integrated in GIS using weighted overlay method to create the final groundwater prospect zone map. From the outcomes, the groundwater prospect zones of the KRB basin was found to be very good (166.21 km2), good (92.01 km2), moderate (180.33 km2), poor (237.25 km2), which constitute 24, 15, 26 and 35% of the study area, respectively. The GW prospect zone map was finally validated using geohydrology of area and GW level data from 43 phreatic wells in the study area. This study showed that groundwater prospect zone demarcation along with multi-criteria decision making is a powerful tool for proper utilization, planning and management of the precious groundwater resource.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12665-017-6749-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1346438", 
            "issn": [
              "1866-6280", 
              "1866-6299"
            ], 
            "name": "Environmental Earth Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "76"
          }
        ], 
        "name": "Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala", 
        "pagination": "428", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "44a7fc62a68daf2e6d786f95b7a76928f274575329b2b7be0ff6b7e0d40b1147"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12665-017-6749-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086100734"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12665-017-6749-8", 
          "https://app.dimensions.ai/details/publication/pub.1086100734"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12665-017-6749-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-017-6749-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-017-6749-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-017-6749-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-017-6749-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12665-017-6749-8 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author Nb2313d0984b3417287fe4effeaa705a2
    4 schema:citation sg:pub.10.1007/bf02989916
    5 sg:pub.10.1007/bf02989927
    6 sg:pub.10.1007/bf03030772
    7 sg:pub.10.1007/bf03030858
    8 sg:pub.10.1007/s11269-006-9024-4
    9 sg:pub.10.1007/s11269-010-9749-y
    10 sg:pub.10.1007/s11269-014-0663-6
    11 sg:pub.10.1007/s11269-016-1421-8
    12 sg:pub.10.1007/s12040-013-0309-8
    13 sg:pub.10.1007/s12517-013-0849-x
    14 sg:pub.10.1007/s12517-015-2238-0
    15 sg:pub.10.1007/s12594-016-0511-9
    16 sg:pub.10.1007/s12665-009-0110-9
    17 https://doi.org/10.1016/j.jseaes.2006.11.002
    18 https://doi.org/10.1029/tr013i001p00350
    19 https://doi.org/10.1080/01431160601086050
    20 https://doi.org/10.2298/yjor1001071g
    21 https://doi.org/10.5772/16469
    22 https://doi.org/10.7763/ijimt.2013.v4.395
    23 schema:datePublished 2017-06
    24 schema:datePublishedReg 2017-06-01
    25 schema:description The efficiency of GIS, RS and multi-criteria tools in isolating potential groundwater (GW) zones in the Kuttiyadi River basin (KRB), Kerala, has been robustly demonstrated by analysis of relevant data. To infer geohydrological makeup and consequent behavior of the KRB in respect of GW potential, firstly, various thematic layers viz. geomorphology, geology, slope, soil, lineament density and drainage density, were created. Secondly, thematic layers and their features were assigned suitable weights on the Saaty’s scale according to their relative significance for the presence and potential of GW. The assigned weights of the layers and their features were normalized using analytic network process method, and then the selected thematic maps were integrated in GIS using weighted overlay method to create the final groundwater prospect zone map. From the outcomes, the groundwater prospect zones of the KRB basin was found to be very good (166.21 km2), good (92.01 km2), moderate (180.33 km2), poor (237.25 km2), which constitute 24, 15, 26 and 35% of the study area, respectively. The GW prospect zone map was finally validated using geohydrology of area and GW level data from 43 phreatic wells in the study area. This study showed that groundwater prospect zone demarcation along with multi-criteria decision making is a powerful tool for proper utilization, planning and management of the precious groundwater resource.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N30d0f429fd424c23b31bb3858bd5d7d7
    30 Nce829fa219984658abc82c9ba4f86375
    31 sg:journal.1346438
    32 schema:name Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala
    33 schema:pagination 428
    34 schema:productId N342889d20d2b447ca4d3f2d7ec6cfb4e
    35 N58e68f04f73e41e28b4f83b1ae7ffc26
    36 Nd3e9d7b379a547bea2db40b96b59ccf1
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086100734
    38 https://doi.org/10.1007/s12665-017-6749-8
    39 schema:sdDatePublished 2019-04-11T09:56
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nb51f79eaefc640218bcf38e2826a3385
    42 schema:url https://link.springer.com/10.1007%2Fs12665-017-6749-8
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N055f64bab8c943b19812e062882ff356 schema:name Center for Environment and Development, 695013, Thiruvananthapuram, Kerala, India
    47 rdf:type schema:Organization
    48 N178b129bed514de1900d908643f10304 rdf:first sg:person.010051322706.30
    49 rdf:rest rdf:nil
    50 N30d0f429fd424c23b31bb3858bd5d7d7 schema:issueNumber 12
    51 rdf:type schema:PublicationIssue
    52 N342889d20d2b447ca4d3f2d7ec6cfb4e schema:name doi
    53 schema:value 10.1007/s12665-017-6749-8
    54 rdf:type schema:PropertyValue
    55 N58e68f04f73e41e28b4f83b1ae7ffc26 schema:name dimensions_id
    56 schema:value pub.1086100734
    57 rdf:type schema:PropertyValue
    58 Nb2313d0984b3417287fe4effeaa705a2 rdf:first sg:person.016342114527.14
    59 rdf:rest Ne4675eca315e4f91813c879db57eeca7
    60 Nb51f79eaefc640218bcf38e2826a3385 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Nce829fa219984658abc82c9ba4f86375 schema:volumeNumber 76
    63 rdf:type schema:PublicationVolume
    64 Nd3e9d7b379a547bea2db40b96b59ccf1 schema:name readcube_id
    65 schema:value 44a7fc62a68daf2e6d786f95b7a76928f274575329b2b7be0ff6b7e0d40b1147
    66 rdf:type schema:PropertyValue
    67 Ne4675eca315e4f91813c879db57eeca7 rdf:first sg:person.010300231111.32
    68 rdf:rest Nff44e76ef0a94682b5aeaaefe88a30c9
    69 Nff44e76ef0a94682b5aeaaefe88a30c9 rdf:first sg:person.016025002051.43
    70 rdf:rest N178b129bed514de1900d908643f10304
    71 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Earth Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Physical Geography and Environmental Geoscience
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1346438 schema:issn 1866-6280
    78 1866-6299
    79 schema:name Environmental Earth Sciences
    80 rdf:type schema:Periodical
    81 sg:person.010051322706.30 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
    82 schema:familyName Jesiya
    83 schema:givenName N. P.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010051322706.30
    85 rdf:type schema:Person
    86 sg:person.010300231111.32 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
    87 schema:familyName Gopinath
    88 schema:givenName Girish
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300231111.32
    90 rdf:type schema:Person
    91 sg:person.016025002051.43 schema:affiliation N055f64bab8c943b19812e062882ff356
    92 schema:familyName Thrivikramji
    93 schema:givenName K. P.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025002051.43
    95 rdf:type schema:Person
    96 sg:person.016342114527.14 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
    97 schema:familyName Swetha
    98 schema:givenName T. V.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342114527.14
    100 rdf:type schema:Person
    101 sg:pub.10.1007/bf02989916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608234
    102 https://doi.org/10.1007/bf02989916
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02989927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005353969
    105 https://doi.org/10.1007/bf02989927
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf03030772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000324945
    108 https://doi.org/10.1007/bf03030772
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf03030858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020445137
    111 https://doi.org/10.1007/bf03030858
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s11269-006-9024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022386377
    114 https://doi.org/10.1007/s11269-006-9024-4
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11269-010-9749-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050192124
    117 https://doi.org/10.1007/s11269-010-9749-y
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s11269-014-0663-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036883713
    120 https://doi.org/10.1007/s11269-014-0663-6
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s11269-016-1421-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008631892
    123 https://doi.org/10.1007/s11269-016-1421-8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s12040-013-0309-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013383113
    126 https://doi.org/10.1007/s12040-013-0309-8
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s12517-013-0849-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551314
    129 https://doi.org/10.1007/s12517-013-0849-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s12517-015-2238-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525609
    132 https://doi.org/10.1007/s12517-015-2238-0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s12594-016-0511-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008576019
    135 https://doi.org/10.1007/s12594-016-0511-9
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s12665-009-0110-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864819
    138 https://doi.org/10.1007/s12665-009-0110-9
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.jseaes.2006.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791710
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1029/tr013i001p00350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023388248
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1080/01431160601086050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042973831
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.2298/yjor1001071g schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003083
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.5772/16469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001660614
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.7763/ijimt.2013.v4.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074037524
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.464826.a schema:alternateName Centre for Water Resources Development and Management
    153 schema:name Centre for Water Resources Development and Management, 673571, Kozhikode, Kerala, India
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...