Visualizing the temporal development of thermo-radiative features on ground-based thermographs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Kathrin Häb, Nils H. Feige, Lars S. Huettenberger, Ariane Middel, Hans Hagen

ABSTRACT

In urban microclimate research, ground-based thermography is used to gain insight into the spatial distribution of surface temperatures of various materials. Taking snapshots over a certain time span helps experts to observe the temporal thermo-radiative behavior of the monitored surface elements and therefore supports decisions on possible optimizations, e.g., improving the thermal comfort in a neighborhood. Appropriate visualization techniques facilitate decision-making and are thus crucial in the optimization process. In this study, we present a tool that eases the extraction of thermo-radiative features from multi-temporal thermographs taken from a monitored scene. Assisted by our tool, users can identify, choose, and register thermo-radiative features for each time step according to their individual research needs. The features’ temporal development is then visualized using a directed graph that encodes topological events as well as each feature’s size and summarizing statistics. To enhance this summary, a comprehensive animated sequence emphasizes the spatiotemporal behavior of the most significant thermo-radiative features. Salient developments are visually embedded and highlighted in the original infrared images, which are blended in an animation from time step to time step. Since we enable the user to interact with the data in a flexible way, noisy and low resolution image data sets can also be processed. More... »

PAGES

3781-3793

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12665-014-3472-6

DOI

http://dx.doi.org/10.1007/s12665-014-3472-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009380728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kaiserslautern", 
          "id": "https://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Computer Graphics and HCI Group, Department of Computer Science, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4b", 
        "givenName": "Kathrin", 
        "id": "sg:person.07623702503.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07623702503.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kaiserslautern", 
          "id": "https://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Computer Graphics and HCI Group, Department of Computer Science, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feige", 
        "givenName": "Nils H.", 
        "id": "sg:person.013423031770.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423031770.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kaiserslautern", 
          "id": "https://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Computational Topology Group, Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huettenberger", 
        "givenName": "Lars S.", 
        "id": "sg:person.01057327407.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057327407.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Middel", 
        "givenName": "Ariane", 
        "id": "sg:person.016177661221.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177661221.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kaiserslautern", 
          "id": "https://www.grid.ac/institutes/grid.7645.0", 
          "name": [
            "Computer Graphics and HCI Group, Department of Computer Science, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagen", 
        "givenName": "Hans", 
        "id": "sg:person.01155066112.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155066112.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00704-012-0631-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000559232", 
          "https://doi.org/10.1007/s00704-012-0631-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7788(01)00105-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002149729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002952614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1177352.1177355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003634065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(99)00136-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003914910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007575408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00133570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016330466", 
          "https://doi.org/10.1007/bf00133570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00133570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016330466", 
          "https://doi.org/10.1007/bf00133570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2006.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2009.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019135848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1268517.1268563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020580159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2006.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020613882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-012-0465-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020907455", 
          "https://doi.org/10.1007/s00138-012-0465-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34234-9_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023249056", 
          "https://doi.org/10.1007/978-3-642-34234-9_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026912767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2009.02.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028325501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2004.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031646916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.uclim.2013.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032440801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00013399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034105074", 
          "https://doi.org/10.1007/pl00013399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-011-0521-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036502909", 
          "https://doi.org/10.1007/s00704-011-0521-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.02.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041621119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2005.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042820403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/000870403235002042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043309873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2010.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047919044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2012.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048244609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.299407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.661186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1986.4767851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ldav.2012.6378962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093624289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2004.1368954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095796942"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "In urban microclimate research, ground-based thermography is used to gain insight into the spatial distribution of surface temperatures of various materials. Taking snapshots over a certain time span helps experts to observe the temporal thermo-radiative behavior of the monitored surface elements and therefore supports decisions on possible optimizations, e.g., improving the thermal comfort in a neighborhood. Appropriate visualization techniques facilitate decision-making and are thus crucial in the optimization process. In this study, we present a tool that eases the extraction of thermo-radiative features from multi-temporal thermographs taken from a monitored scene. Assisted by our tool, users can identify, choose, and register thermo-radiative features for each time step according to their individual research needs. The features\u2019 temporal development is then visualized using a directed graph that encodes topological events as well as each feature\u2019s size and summarizing statistics. To enhance this summary, a comprehensive animated sequence emphasizes the spatiotemporal behavior of the most significant thermo-radiative features. Salient developments are visually embedded and highlighted in the original infrared images, which are blended in an animation from time step to time step. Since we enable the user to interact with the data in a flexible way, noisy and low resolution image data sets can also be processed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12665-014-3472-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1346438", 
        "issn": [
          "1866-6280", 
          "1866-6299"
        ], 
        "name": "Environmental Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "Visualizing the temporal development of thermo-radiative features on ground-based thermographs", 
    "pagination": "3781-3793", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2cafffc438e396b3342b2e7cde32684c29188f3f81b2b9bcedac071c49068ffa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12665-014-3472-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009380728"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12665-014-3472-6", 
      "https://app.dimensions.ai/details/publication/pub.1009380728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12665-014-3472-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-014-3472-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-014-3472-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-014-3472-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-014-3472-6'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12665-014-3472-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1ae4cdcddb574450bc727583edee91f3
4 schema:citation sg:pub.10.1007/978-3-642-34234-9_10
5 sg:pub.10.1007/bf00133570
6 sg:pub.10.1007/pl00013399
7 sg:pub.10.1007/s00138-012-0465-x
8 sg:pub.10.1007/s00704-011-0521-x
9 sg:pub.10.1007/s00704-012-0631-0
10 https://doi.org/10.1016/j.atmosenv.2009.02.062
11 https://doi.org/10.1016/j.buildenv.2005.07.030
12 https://doi.org/10.1016/j.conbuildmat.2010.10.007
13 https://doi.org/10.1016/j.enbuild.2004.01.052
14 https://doi.org/10.1016/j.enbuild.2012.11.025
15 https://doi.org/10.1016/j.eswa.2008.02.043
16 https://doi.org/10.1016/j.inffus.2009.06.008
17 https://doi.org/10.1016/j.patcog.2006.11.010
18 https://doi.org/10.1016/j.rse.2005.12.019
19 https://doi.org/10.1016/j.rse.2009.08.002
20 https://doi.org/10.1016/j.rse.2012.05.027
21 https://doi.org/10.1016/j.solener.2006.11.007
22 https://doi.org/10.1016/j.uclim.2013.01.001
23 https://doi.org/10.1016/s0378-7788(01)00105-0
24 https://doi.org/10.1016/s1352-2310(99)00136-3
25 https://doi.org/10.1109/2.299407
26 https://doi.org/10.1109/83.661186
27 https://doi.org/10.1109/igarss.2004.1368954
28 https://doi.org/10.1109/ldav.2012.6378962
29 https://doi.org/10.1109/tpami.1986.4767851
30 https://doi.org/10.1109/tvcg.2006.16
31 https://doi.org/10.1145/1177352.1177355
32 https://doi.org/10.1145/1268517.1268563
33 https://doi.org/10.1179/000870403235002042
34 schema:datePublished 2014-11
35 schema:datePublishedReg 2014-11-01
36 schema:description In urban microclimate research, ground-based thermography is used to gain insight into the spatial distribution of surface temperatures of various materials. Taking snapshots over a certain time span helps experts to observe the temporal thermo-radiative behavior of the monitored surface elements and therefore supports decisions on possible optimizations, e.g., improving the thermal comfort in a neighborhood. Appropriate visualization techniques facilitate decision-making and are thus crucial in the optimization process. In this study, we present a tool that eases the extraction of thermo-radiative features from multi-temporal thermographs taken from a monitored scene. Assisted by our tool, users can identify, choose, and register thermo-radiative features for each time step according to their individual research needs. The features’ temporal development is then visualized using a directed graph that encodes topological events as well as each feature’s size and summarizing statistics. To enhance this summary, a comprehensive animated sequence emphasizes the spatiotemporal behavior of the most significant thermo-radiative features. Salient developments are visually embedded and highlighted in the original infrared images, which are blended in an animation from time step to time step. Since we enable the user to interact with the data in a flexible way, noisy and low resolution image data sets can also be processed.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N056d4f4721dc440682fd279b25676071
41 N85d8827a9bf04946bff40e48af36f46b
42 sg:journal.1346438
43 schema:name Visualizing the temporal development of thermo-radiative features on ground-based thermographs
44 schema:pagination 3781-3793
45 schema:productId N083d1bf0ed9346a1b378dd4a7947a389
46 N6a0f207578cb45e29412d3f41713cfa2
47 N6c2f03e032d24a8baed8ebbb5a880721
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009380728
49 https://doi.org/10.1007/s12665-014-3472-6
50 schema:sdDatePublished 2019-04-10T20:49
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N8aa1d8d9fea04e50947ca43c1b8c58dd
53 schema:url http://link.springer.com/10.1007%2Fs12665-014-3472-6
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N056d4f4721dc440682fd279b25676071 schema:issueNumber 10
58 rdf:type schema:PublicationIssue
59 N083d1bf0ed9346a1b378dd4a7947a389 schema:name dimensions_id
60 schema:value pub.1009380728
61 rdf:type schema:PropertyValue
62 N15a45c11e73043cbaf5cf540eed18183 rdf:first sg:person.01057327407.69
63 rdf:rest Nd2230a89836e43fbb68d6d4e07d3320f
64 N18dc6d8538534884aca30acc50d0a902 rdf:first sg:person.01155066112.17
65 rdf:rest rdf:nil
66 N1ae4cdcddb574450bc727583edee91f3 rdf:first sg:person.07623702503.15
67 rdf:rest N716b8cdd283b4dd0b4637576fdb76330
68 N6a0f207578cb45e29412d3f41713cfa2 schema:name readcube_id
69 schema:value 2cafffc438e396b3342b2e7cde32684c29188f3f81b2b9bcedac071c49068ffa
70 rdf:type schema:PropertyValue
71 N6c2f03e032d24a8baed8ebbb5a880721 schema:name doi
72 schema:value 10.1007/s12665-014-3472-6
73 rdf:type schema:PropertyValue
74 N716b8cdd283b4dd0b4637576fdb76330 rdf:first sg:person.013423031770.00
75 rdf:rest N15a45c11e73043cbaf5cf540eed18183
76 N85d8827a9bf04946bff40e48af36f46b schema:volumeNumber 72
77 rdf:type schema:PublicationVolume
78 N8aa1d8d9fea04e50947ca43c1b8c58dd schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nd2230a89836e43fbb68d6d4e07d3320f rdf:first sg:person.016177661221.63
81 rdf:rest N18dc6d8538534884aca30acc50d0a902
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:journal.1346438 schema:issn 1866-6280
89 1866-6299
90 schema:name Environmental Earth Sciences
91 rdf:type schema:Periodical
92 sg:person.01057327407.69 schema:affiliation https://www.grid.ac/institutes/grid.7645.0
93 schema:familyName Huettenberger
94 schema:givenName Lars S.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057327407.69
96 rdf:type schema:Person
97 sg:person.01155066112.17 schema:affiliation https://www.grid.ac/institutes/grid.7645.0
98 schema:familyName Hagen
99 schema:givenName Hans
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155066112.17
101 rdf:type schema:Person
102 sg:person.013423031770.00 schema:affiliation https://www.grid.ac/institutes/grid.7645.0
103 schema:familyName Feige
104 schema:givenName Nils H.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423031770.00
106 rdf:type schema:Person
107 sg:person.016177661221.63 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
108 schema:familyName Middel
109 schema:givenName Ariane
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177661221.63
111 rdf:type schema:Person
112 sg:person.07623702503.15 schema:affiliation https://www.grid.ac/institutes/grid.7645.0
113 schema:familyName Häb
114 schema:givenName Kathrin
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07623702503.15
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-642-34234-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023249056
118 https://doi.org/10.1007/978-3-642-34234-9_10
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00133570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016330466
121 https://doi.org/10.1007/bf00133570
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/pl00013399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034105074
124 https://doi.org/10.1007/pl00013399
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00138-012-0465-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020907455
127 https://doi.org/10.1007/s00138-012-0465-x
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00704-011-0521-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036502909
130 https://doi.org/10.1007/s00704-011-0521-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00704-012-0631-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000559232
133 https://doi.org/10.1007/s00704-012-0631-0
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.atmosenv.2009.02.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028325501
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.buildenv.2005.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042820403
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.conbuildmat.2010.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047919044
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.enbuild.2004.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031646916
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.enbuild.2012.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048244609
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.eswa.2008.02.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041621119
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.inffus.2009.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019135848
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.patcog.2006.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020613882
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.rse.2005.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002952614
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.rse.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007575408
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rse.2012.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026912767
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.solener.2006.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596600
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.uclim.2013.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032440801
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0378-7788(01)00105-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002149729
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s1352-2310(99)00136-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003914910
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/2.299407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105309
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/83.661186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239714
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/igarss.2004.1368954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095796942
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/ldav.2012.6378962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093624289
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tvcg.2006.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812626
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/1177352.1177355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003634065
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/1268517.1268563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020580159
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1179/000870403235002042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043309873
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
184 schema:name Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.7645.0 schema:alternateName University of Kaiserslautern
187 schema:name Computational Topology Group, Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany
188 Computer Graphics and HCI Group, Department of Computer Science, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...