Development of a model for analysis of slope stability for circular mode failure using genetic algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Amin Manouchehrian, Javad Gholamnejad, Mostafa Sharifzadeh

ABSTRACT

Slope stability estimation is an engineering problem that involves several parameters. The interactions between factors that affect slope instability are complex and multi-factorial, so often it is difficult to describe the slope stability mathematically. This paper, proposes the use of a genetic algorithm (GA) as a heuristic search method to find a regression model for analyzing the slope stability. For this purpose, an evolutionary algorithm based on GA was used to develop a regression model for prediction of factor of safety (FS) for circular mode failure. The proposed GA uses the root mean squared error as the fitness function and searches among a large number of possible regression models to choose the best for estimation of FS from six geotechnical and geometrical parameters. For validation of the model and checking its efficiency, a validation dataset was used to evaluate FS using the proposed model and a previously developed mathematical GA based model in the literature. Results have shown that the presented model in this study was capable of evaluating FS at a higher level of confidence regarding the other model (R = 0.89 for presented model in this study comparing R = 0.78 for the other model) and can be efficient enough to be used as a simple mathematical tool for evaluation of factor of safety for circular mode failure especially in preliminary stages of the designing phase. More... »

PAGES

1267-1277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12665-013-2531-8

DOI

http://dx.doi.org/10.1007/s12665-013-2531-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023360189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yazd University", 
          "id": "https://www.grid.ac/institutes/grid.413021.5", 
          "name": [
            "Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manouchehrian", 
        "givenName": "Amin", 
        "id": "sg:person.014512612022.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512612022.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yazd University", 
          "id": "https://www.grid.ac/institutes/grid.413021.5", 
          "name": [
            "Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gholamnejad", 
        "givenName": "Javad", 
        "id": "sg:person.01046376436.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046376436.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amirkabir University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411368.9", 
          "name": [
            "Mining, Metallurgy and Petroleum Engineering Department, Amirkabir University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharifzadeh", 
        "givenName": "Mostafa", 
        "id": "sg:person.015500030643.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500030643.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12665-009-0394-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904943", 
          "https://doi.org/10.1007/s12665-009-0394-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0394-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904943", 
          "https://doi.org/10.1007/s12665-009-0394-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.02.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002810390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003642198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1996.4.4.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007200108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(94)92314-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009141873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(94)92314-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009141873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-010-0839-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011395582", 
          "https://doi.org/10.1007/s12665-010-0839-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-352x(02)00027-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011966744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2008.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012300655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0290-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020591756", 
          "https://doi.org/10.1007/s12665-009-0290-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0290-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020591756", 
          "https://doi.org/10.1007/s12665-009-0290-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-012-9148-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020599129", 
          "https://doi.org/10.1007/s12559-012-9148-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2006.05.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025298021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-4105(00)00096-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029545150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03178929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030700859", 
          "https://doi.org/10.1007/bf03178929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03178929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030700859", 
          "https://doi.org/10.1007/bf03178929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2011.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033098346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-007-1161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033315903", 
          "https://doi.org/10.1007/s00254-007-1161-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-007-1161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033315903", 
          "https://doi.org/10.1007/s00254-007-1161-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2003.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033743948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2011.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035507548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(00)00058-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038864492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2011.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039784259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-004-8680-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172455", 
          "https://doi.org/10.1007/s10706-004-8680-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2004)18:2(145)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/000313001317098149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064196872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1955.5.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068208716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1965.15.4.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1967.17.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1973.23.3.423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1975.25.4.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1999.49.3.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068210949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "Slope stability estimation is an engineering problem that involves several parameters. The interactions between factors that affect slope instability are complex and multi-factorial, so often it is difficult to describe the slope stability mathematically. This paper, proposes the use of a genetic algorithm (GA) as a heuristic search method to find a regression model for analyzing the slope stability. For this purpose, an evolutionary algorithm based on GA was used to develop a regression model for prediction of factor of safety (FS) for circular mode failure. The proposed GA uses the root mean squared error as the fitness function and searches among a large number of possible regression models to choose the best for estimation of FS from six geotechnical and geometrical parameters. For validation of the model and checking its efficiency, a validation dataset was used to evaluate FS using the proposed model and a previously developed mathematical GA based model in the literature. Results have shown that the presented model in this study was capable of evaluating FS at a higher level of confidence regarding the other model (R = 0.89 for presented model in this study comparing R = 0.78 for the other model) and can be efficient enough to be used as a simple mathematical tool for evaluation of factor of safety for circular mode failure especially in preliminary stages of the designing phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12665-013-2531-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1346438", 
        "issn": [
          "1866-6280", 
          "1866-6299"
        ], 
        "name": "Environmental Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Development of a model for analysis of slope stability for circular mode failure using genetic algorithm", 
    "pagination": "1267-1277", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f4b834499181674c4b73519c6879c722497992d02d474844822e0fbd5c5b28e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12665-013-2531-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023360189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12665-013-2531-8", 
      "https://app.dimensions.ai/details/publication/pub.1023360189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12665-013-2531-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-013-2531-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-013-2531-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-013-2531-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-013-2531-8'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12665-013-2531-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na16233c7f35e488da7cf34de7a7297cd
4 schema:citation sg:pub.10.1007/bf03178929
5 sg:pub.10.1007/s00254-007-1161-4
6 sg:pub.10.1007/s10706-004-8680-5
7 sg:pub.10.1007/s12559-012-9148-1
8 sg:pub.10.1007/s12665-009-0290-3
9 sg:pub.10.1007/s12665-009-0394-9
10 sg:pub.10.1007/s12665-010-0839-1
11 https://doi.org/10.1016/0148-9062(94)92314-0
12 https://doi.org/10.1016/j.amc.2006.05.072
13 https://doi.org/10.1016/j.cageo.2008.10.015
14 https://doi.org/10.1016/j.cageo.2011.10.024
15 https://doi.org/10.1016/j.compgeo.2005.02.001
16 https://doi.org/10.1016/j.compgeo.2008.03.006
17 https://doi.org/10.1016/j.csda.2003.11.003
18 https://doi.org/10.1016/j.enggeo.2011.11.008
19 https://doi.org/10.1016/j.eswa.2012.02.149
20 https://doi.org/10.1016/j.scient.2011.03.007
21 https://doi.org/10.1016/s0167-9473(00)00058-x
22 https://doi.org/10.1016/s0266-352x(02)00027-7
23 https://doi.org/10.1016/s0920-4105(00)00096-6
24 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(145)
25 https://doi.org/10.1162/evco.1996.4.4.361
26 https://doi.org/10.1198/000313001317098149
27 https://doi.org/10.1680/geot.1955.5.1.7
28 https://doi.org/10.1680/geot.1965.15.4.387
29 https://doi.org/10.1680/geot.1967.17.1.11
30 https://doi.org/10.1680/geot.1973.23.3.423
31 https://doi.org/10.1680/geot.1975.25.4.671
32 https://doi.org/10.1680/geot.1999.49.3.387
33 schema:datePublished 2014-02
34 schema:datePublishedReg 2014-02-01
35 schema:description Slope stability estimation is an engineering problem that involves several parameters. The interactions between factors that affect slope instability are complex and multi-factorial, so often it is difficult to describe the slope stability mathematically. This paper, proposes the use of a genetic algorithm (GA) as a heuristic search method to find a regression model for analyzing the slope stability. For this purpose, an evolutionary algorithm based on GA was used to develop a regression model for prediction of factor of safety (FS) for circular mode failure. The proposed GA uses the root mean squared error as the fitness function and searches among a large number of possible regression models to choose the best for estimation of FS from six geotechnical and geometrical parameters. For validation of the model and checking its efficiency, a validation dataset was used to evaluate FS using the proposed model and a previously developed mathematical GA based model in the literature. Results have shown that the presented model in this study was capable of evaluating FS at a higher level of confidence regarding the other model (R = 0.89 for presented model in this study comparing R = 0.78 for the other model) and can be efficient enough to be used as a simple mathematical tool for evaluation of factor of safety for circular mode failure especially in preliminary stages of the designing phase.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N9237b569339b4b21b5c380aa8b3804ec
40 Nbd12b4baccc749a6b0ea2ef5162cf57a
41 sg:journal.1346438
42 schema:name Development of a model for analysis of slope stability for circular mode failure using genetic algorithm
43 schema:pagination 1267-1277
44 schema:productId N5d4e9bf3e0bd467d8ab8948f3b4e8897
45 N652e80181cd7455eaca59a125a317919
46 N6c42af1b1174427e9d5e5c909f714729
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023360189
48 https://doi.org/10.1007/s12665-013-2531-8
49 schema:sdDatePublished 2019-04-10T21:39
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc71a6dfa9e7c4c6ea0fcafc7f7a7d5a3
52 schema:url http://link.springer.com/10.1007%2Fs12665-013-2531-8
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0568137523f64d20a3e8327d3c912503 rdf:first sg:person.015500030643.22
57 rdf:rest rdf:nil
58 N1544eb64510f477bba640176277f11b3 rdf:first sg:person.01046376436.92
59 rdf:rest N0568137523f64d20a3e8327d3c912503
60 N5d4e9bf3e0bd467d8ab8948f3b4e8897 schema:name doi
61 schema:value 10.1007/s12665-013-2531-8
62 rdf:type schema:PropertyValue
63 N652e80181cd7455eaca59a125a317919 schema:name readcube_id
64 schema:value 6f4b834499181674c4b73519c6879c722497992d02d474844822e0fbd5c5b28e
65 rdf:type schema:PropertyValue
66 N6c42af1b1174427e9d5e5c909f714729 schema:name dimensions_id
67 schema:value pub.1023360189
68 rdf:type schema:PropertyValue
69 N9237b569339b4b21b5c380aa8b3804ec schema:volumeNumber 71
70 rdf:type schema:PublicationVolume
71 Na16233c7f35e488da7cf34de7a7297cd rdf:first sg:person.014512612022.03
72 rdf:rest N1544eb64510f477bba640176277f11b3
73 Nbd12b4baccc749a6b0ea2ef5162cf57a schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 Nc71a6dfa9e7c4c6ea0fcafc7f7a7d5a3 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1346438 schema:issn 1866-6280
84 1866-6299
85 schema:name Environmental Earth Sciences
86 rdf:type schema:Periodical
87 sg:person.01046376436.92 schema:affiliation https://www.grid.ac/institutes/grid.413021.5
88 schema:familyName Gholamnejad
89 schema:givenName Javad
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046376436.92
91 rdf:type schema:Person
92 sg:person.014512612022.03 schema:affiliation https://www.grid.ac/institutes/grid.413021.5
93 schema:familyName Manouchehrian
94 schema:givenName Amin
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512612022.03
96 rdf:type schema:Person
97 sg:person.015500030643.22 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
98 schema:familyName Sharifzadeh
99 schema:givenName Mostafa
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500030643.22
101 rdf:type schema:Person
102 sg:pub.10.1007/bf03178929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030700859
103 https://doi.org/10.1007/bf03178929
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00254-007-1161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033315903
106 https://doi.org/10.1007/s00254-007-1161-4
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10706-004-8680-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172455
109 https://doi.org/10.1007/s10706-004-8680-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12559-012-9148-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020599129
112 https://doi.org/10.1007/s12559-012-9148-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12665-009-0290-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020591756
115 https://doi.org/10.1007/s12665-009-0290-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12665-009-0394-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904943
118 https://doi.org/10.1007/s12665-009-0394-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12665-010-0839-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011395582
121 https://doi.org/10.1007/s12665-010-0839-1
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0148-9062(94)92314-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009141873
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.amc.2006.05.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025298021
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cageo.2008.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012300655
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.cageo.2011.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035507548
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.compgeo.2005.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038864492
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.compgeo.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003642198
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.csda.2003.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033743948
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.enggeo.2011.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033098346
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.eswa.2012.02.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002810390
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.scient.2011.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039784259
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0167-9473(00)00058-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036089119
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0266-352x(02)00027-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011966744
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0920-4105(00)00096-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029545150
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1061/(asce)0887-3801(2004)18:2(145) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609438
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1162/evco.1996.4.4.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007200108
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1198/000313001317098149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064196872
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1680/geot.1955.5.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068208716
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1680/geot.1965.15.4.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209071
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1680/geot.1967.17.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209120
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1680/geot.1973.23.3.423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209476
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1680/geot.1975.25.4.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209627
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1680/geot.1999.49.3.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210949
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.411368.9 schema:alternateName Amirkabir University of Technology
168 schema:name Mining, Metallurgy and Petroleum Engineering Department, Amirkabir University of Technology, Tehran, Iran
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.413021.5 schema:alternateName Yazd University
171 schema:name Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...