Analytic hierarchy models for regional groundwater monitoring well allocation in Southeast Asian countries and South Korea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

Gyoo-Bum Kim, Joo-Sung Ahn, Atsunao Marui

ABSTRACT

Groundwater has played an important role in economic development in Southeast Asian countries, but some problems caused by nature or human actions such as contamination, over pumping, and land subsidence bring the necessity of more systematic groundwater monitoring wells. The analytical hierarchy process with pairwise comparison was used to allocate and organize the regional groundwater monitoring wells in five regions, Thailand, Cambodia, East/West Malaysia, and South Korea. Five different multi criteria decision models, which were composed of three primary criteria and eight secondary criteria, were developed based on the answers of the questionnaire from 76 groundwater experts in Thailand, 100 in Cambodia, 101 in East Malaysia, 87 in West Malaysia, and 93 in South Korea. It was revealed that the weights of model criteria for each country, which also represent relative importance on groundwater monitoring, were different according to the diverse groundwater situation. The most important factor to determine the number of monitoring well was ‘number of households using only groundwater as a water source’ for Thailand and South Korea, ‘number of contamination sources’ for Cambodia, ‘amount of groundwater use for drinking-water supply’ for East Malaysia, and ‘number of wells with contaminated water’ for West Malaysia. More... »

PAGES

325

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12665-009-0029-1

DOI

http://dx.doi.org/10.1007/s12665-009-0029-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039037396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Korea Water Resources Corporation, San 6-2, Yonchuk-dong, Daeduk-gu, 306-711, Daejeon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Gyoo-Bum", 
        "id": "sg:person.012512513225.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512513225.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Geoscience and Mineral Resources", 
          "id": "https://www.grid.ac/institutes/grid.410882.7", 
          "name": [
            "Korea Institute of Geoscience and Mineral Resources, Gwahang-no 92, Yuseong-gu, 305-350, Daejeon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Joo-Sung", 
        "id": "sg:person.0731174122.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731174122.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geological Survey of Japan", 
          "id": "https://www.grid.ac/institutes/grid.466781.a", 
          "name": [
            "Geological Survey of Japan (AIST), 1-1-1, #7 Higashi, 305-8567, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marui", 
        "givenName": "Atsunao", 
        "id": "sg:person.010756705043.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756705043.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/wr025i010p02245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003008182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-007-0168-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069563", 
          "https://doi.org/10.1007/s10040-007-0168-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-007-0168-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069563", 
          "https://doi.org/10.1007/s10040-007-0168-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09614520701197333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004822075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-1688.2007.00027.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013771098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-5273(01)00141-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015063617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-9255(03)00091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015759097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-9255(03)00091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015759097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1477-9552.2007.00085.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017380777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.1989.tb01568.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020945336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(95)02892-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023694616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000wr900232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027611275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2500-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038307810", 
          "https://doi.org/10.1007/978-1-4757-2500-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2500-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038307810", 
          "https://doi.org/10.1007/978-1-4757-2500-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2006.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041119175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1180/0026461056950290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046004136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2005.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050570290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051237953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(96)00087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051931372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/inte.24.6.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064709875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wh.2006.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069136655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "Groundwater has played an important role in economic development in Southeast Asian countries, but some problems caused by nature or human actions such as contamination, over pumping, and land subsidence bring the necessity of more systematic groundwater monitoring wells. The analytical hierarchy process with pairwise comparison was used to allocate and organize the regional groundwater monitoring wells in five regions, Thailand, Cambodia, East/West Malaysia, and South Korea. Five different multi criteria decision models, which were composed of three primary criteria and eight secondary criteria, were developed based on the answers of the questionnaire from 76 groundwater experts in Thailand, 100 in Cambodia, 101 in East Malaysia, 87 in West Malaysia, and 93 in South Korea. It was revealed that the weights of model criteria for each country, which also represent relative importance on groundwater monitoring, were different according to the diverse groundwater situation. The most important factor to determine the number of monitoring well was \u2018number of households using only groundwater as a water source\u2019 for Thailand and South Korea, \u2018number of contamination sources\u2019 for Cambodia, \u2018amount of groundwater use for drinking-water supply\u2019 for East Malaysia, and \u2018number of wells with contaminated water\u2019 for West Malaysia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12665-009-0029-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1346438", 
        "issn": [
          "1866-6280", 
          "1866-6299"
        ], 
        "name": "Environmental Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Analytic hierarchy models for regional groundwater monitoring well allocation in Southeast Asian countries and South Korea", 
    "pagination": "325", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9f4227d9a8984e3cd09ebe6b95ed0fa4d1446ca6df39af3b8111e94b0ae11ae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12665-009-0029-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039037396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12665-009-0029-1", 
      "https://app.dimensions.ai/details/publication/pub.1039037396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64119_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12665-009-0029-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12665-009-0029-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12665-009-0029-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12665-009-0029-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12665-009-0029-1'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12665-009-0029-1 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nf3da9081c72147a3b02c19c5e7d3b06c
4 schema:citation sg:pub.10.1007/978-1-4757-2500-1
5 sg:pub.10.1007/s10040-007-0168-y
6 https://doi.org/10.1002/hyp.6282
7 https://doi.org/10.1016/0022-1694(95)02892-7
8 https://doi.org/10.1016/0043-1354(96)00087-5
9 https://doi.org/10.1016/j.enggeo.2005.10.004
10 https://doi.org/10.1016/j.jhydrol.2007.05.034
11 https://doi.org/10.1016/j.scitotenv.2006.09.010
12 https://doi.org/10.1016/s0195-9255(03)00091-x
13 https://doi.org/10.1016/s0925-5273(01)00141-4
14 https://doi.org/10.1029/2000wr900232
15 https://doi.org/10.1029/wr025i010p02245
16 https://doi.org/10.1080/09614520701197333
17 https://doi.org/10.1111/j.1477-9552.2007.00085.x
18 https://doi.org/10.1111/j.1540-5915.1989.tb01568.x
19 https://doi.org/10.1111/j.1752-1688.2007.00027.x
20 https://doi.org/10.1180/0026461056950290
21 https://doi.org/10.1287/inte.24.6.19
22 https://doi.org/10.2166/wh.2006.048
23 schema:datePublished 2009-11
24 schema:datePublishedReg 2009-11-01
25 schema:description Groundwater has played an important role in economic development in Southeast Asian countries, but some problems caused by nature or human actions such as contamination, over pumping, and land subsidence bring the necessity of more systematic groundwater monitoring wells. The analytical hierarchy process with pairwise comparison was used to allocate and organize the regional groundwater monitoring wells in five regions, Thailand, Cambodia, East/West Malaysia, and South Korea. Five different multi criteria decision models, which were composed of three primary criteria and eight secondary criteria, were developed based on the answers of the questionnaire from 76 groundwater experts in Thailand, 100 in Cambodia, 101 in East Malaysia, 87 in West Malaysia, and 93 in South Korea. It was revealed that the weights of model criteria for each country, which also represent relative importance on groundwater monitoring, were different according to the diverse groundwater situation. The most important factor to determine the number of monitoring well was ‘number of households using only groundwater as a water source’ for Thailand and South Korea, ‘number of contamination sources’ for Cambodia, ‘amount of groundwater use for drinking-water supply’ for East Malaysia, and ‘number of wells with contaminated water’ for West Malaysia.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Na07b3f621b864c01ba5f17091e3d2a25
30 Nf84df0bd8ef74d2ab04fafaead01e704
31 sg:journal.1346438
32 schema:name Analytic hierarchy models for regional groundwater monitoring well allocation in Southeast Asian countries and South Korea
33 schema:pagination 325
34 schema:productId N076a0df62faa473390601bc0f4a7039f
35 N1e64a64ce7704d4fa4e6acf744eac574
36 N5cc513c3c6a140df9b57eab1eb3a1370
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039037396
38 https://doi.org/10.1007/s12665-009-0029-1
39 schema:sdDatePublished 2019-04-11T09:27
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd9d811f112c442fa99dfe876ed2b6bf7
42 schema:url http://link.springer.com/10.1007%2Fs12665-009-0029-1
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N076a0df62faa473390601bc0f4a7039f schema:name dimensions_id
47 schema:value pub.1039037396
48 rdf:type schema:PropertyValue
49 N14e9b4eab91444aa95a551572b9181c4 rdf:first sg:person.010756705043.87
50 rdf:rest rdf:nil
51 N1e64a64ce7704d4fa4e6acf744eac574 schema:name readcube_id
52 schema:value b9f4227d9a8984e3cd09ebe6b95ed0fa4d1446ca6df39af3b8111e94b0ae11ae
53 rdf:type schema:PropertyValue
54 N5cc513c3c6a140df9b57eab1eb3a1370 schema:name doi
55 schema:value 10.1007/s12665-009-0029-1
56 rdf:type schema:PropertyValue
57 N6c4172b8649e4ee29783d875ed161bda rdf:first sg:person.0731174122.53
58 rdf:rest N14e9b4eab91444aa95a551572b9181c4
59 Na07b3f621b864c01ba5f17091e3d2a25 schema:volumeNumber 59
60 rdf:type schema:PublicationVolume
61 Nd9d811f112c442fa99dfe876ed2b6bf7 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Ne0e1e936a47147d58afcef7230c6b75a schema:name Korea Water Resources Corporation, San 6-2, Yonchuk-dong, Daeduk-gu, 306-711, Daejeon, South Korea
64 rdf:type schema:Organization
65 Nf3da9081c72147a3b02c19c5e7d3b06c rdf:first sg:person.012512513225.07
66 rdf:rest N6c4172b8649e4ee29783d875ed161bda
67 Nf84df0bd8ef74d2ab04fafaead01e704 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
70 schema:name Earth Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Geography and Environmental Geoscience
74 rdf:type schema:DefinedTerm
75 sg:journal.1346438 schema:issn 1866-6280
76 1866-6299
77 schema:name Environmental Earth Sciences
78 rdf:type schema:Periodical
79 sg:person.010756705043.87 schema:affiliation https://www.grid.ac/institutes/grid.466781.a
80 schema:familyName Marui
81 schema:givenName Atsunao
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756705043.87
83 rdf:type schema:Person
84 sg:person.012512513225.07 schema:affiliation Ne0e1e936a47147d58afcef7230c6b75a
85 schema:familyName Kim
86 schema:givenName Gyoo-Bum
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512513225.07
88 rdf:type schema:Person
89 sg:person.0731174122.53 schema:affiliation https://www.grid.ac/institutes/grid.410882.7
90 schema:familyName Ahn
91 schema:givenName Joo-Sung
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731174122.53
93 rdf:type schema:Person
94 sg:pub.10.1007/978-1-4757-2500-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038307810
95 https://doi.org/10.1007/978-1-4757-2500-1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10040-007-0168-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003069563
98 https://doi.org/10.1007/s10040-007-0168-y
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/hyp.6282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051237953
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0022-1694(95)02892-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023694616
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0043-1354(96)00087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051931372
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.enggeo.2005.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050570290
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jhydrol.2007.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041119175
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.scitotenv.2006.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403172
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0195-9255(03)00091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015759097
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0925-5273(01)00141-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015063617
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1029/2000wr900232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027611275
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/wr025i010p02245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008182
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/09614520701197333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004822075
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1111/j.1477-9552.2007.00085.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017380777
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1111/j.1540-5915.1989.tb01568.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020945336
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/j.1752-1688.2007.00027.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013771098
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1180/0026461056950290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004136
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1287/inte.24.6.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064709875
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2166/wh.2006.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069136655
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.410882.7 schema:alternateName Korea Institute of Geoscience and Mineral Resources
135 schema:name Korea Institute of Geoscience and Mineral Resources, Gwahang-no 92, Yuseong-gu, 305-350, Daejeon, South Korea
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.466781.a schema:alternateName Geological Survey of Japan
138 schema:name Geological Survey of Japan (AIST), 1-1-1, #7 Higashi, 305-8567, Tsukuba, Japan
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...