Clustering of human activities from emerging movements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-03

AUTHORS

Kevin Bouchard, Jeremy Lapalu, Bruno Bouchard, Abdenour Bouzouane

ABSTRACT

This paper is positioned in the well-established field of smart home. This area of research, highly multidisciplinary, has raised a lot of attention from researchers due to the broad real life application it could serve. One of them is the assistance of the cognitively impaired persons such as head trauma victims or persons afflicted by dementia (e.g.: Alzheimer’s disease). However, to propose powerful technological cognitive orthoses, the decades old challenge of human activity recognition must be addressed. In this paper, we propose a clustering method exploiting the Flocking algorithm for Activity of Daily Living (ADL) learning and recognition. In particular, our new method enables to both exploit events based data from the multimodal sensors of a smart home and qualitative spatial information extracted from a tracking method. Among the advantages of the method, the Flocking based algorithm does not require an initial number of clusters, unlike other clustering algorithms such as K-means. Two sets of real case scenarios were collected in our smart home laboratory, the LIARA. These sets were used to compare our method with traditional unsupervised algorithms and to evaluate the usefulness of the qualitative spatial information. The study shows that for traditional event based smart home data, the method outperforms the popular K-Means and Expectation-Maximization (EM) algorithms. Furthermore, the results indicate that not only the spatial data generalize, but it also further improve the performance regarding fine-grained ADLs recognition. More... »

PAGES

1-13

References to SciGraph publications

  • 2018-08-09. Towards a more reliable and scalable architecture for smart home environments in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2015. Regression Analysis for Gesture Recognition Using RFID Technology in SMART HOMES AND HEALTH TELEMATICS
  • 2018-04. Discovering activity patterns in office environment using a network of low-resolution visual sensors in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2018-10. An experimental comparative study of RSSI-based positioning algorithms for passive RFID localization in smart environments in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2017-02. Learning movement patterns of the occupant in smart home environments: an unsupervised learning approach in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2018-08. Location recognition system using random forest in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2019-03. Deep learning based smart radar vision system for object recognition in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2015-12. MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2018-05-19. Temporal features and relations discovery of activities from sensor data in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-1070-2

    DOI

    http://dx.doi.org/10.1007/s12652-018-1070-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107372650


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 du Qu\u00e9bec \u00e0 Chicoutimi", 
              "id": "https://www.grid.ac/institutes/grid.265696.8", 
              "name": [
                "UQAC, Saguenay, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouchard", 
            "givenName": "Kevin", 
            "id": "sg:person.015353244143.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015353244143.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 du Qu\u00e9bec \u00e0 Chicoutimi", 
              "id": "https://www.grid.ac/institutes/grid.265696.8", 
              "name": [
                "UQAC, Saguenay, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lapalu", 
            "givenName": "Jeremy", 
            "id": "sg:person.014026416343.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026416343.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 du Qu\u00e9bec \u00e0 Chicoutimi", 
              "id": "https://www.grid.ac/institutes/grid.265696.8", 
              "name": [
                "UQAC, Saguenay, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouchard", 
            "givenName": "Bruno", 
            "id": "sg:person.014102265512.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102265512.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 du Qu\u00e9bec \u00e0 Chicoutimi", 
              "id": "https://www.grid.ac/institutes/grid.265696.8", 
              "name": [
                "UQAC, Saguenay, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouzouane", 
            "givenName": "Abdenour", 
            "id": "sg:person.015150332556.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150332556.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2971648.2971691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001639925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmcj.2009.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002769239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2009.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007431495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14424-5_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007438050", 
              "https://doi.org/10.1007/978-3-319-14424-5_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-015-0367-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008908391", 
              "https://doi.org/10.1007/s13042-015-0367-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1835804.1835920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012923630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/37402.37406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017016808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2783258.2783408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020980704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0269888913000350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024098042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-016-0367-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025624924", 
              "https://doi.org/10.1007/s12652-016-0367-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.datak.2010.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032913342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-137-6.50008-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040827711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/08839510701492579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042210598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/ceor.s44625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046586065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sysarc.2006.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049768341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mis.2015.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061406510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.1984.4767478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-017-0511-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086108804", 
              "https://doi.org/10.1007/s12652-017-0511-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-017-0511-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086108804", 
              "https://doi.org/10.1007/s12652-017-0511-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-017-0531-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090285664", 
              "https://doi.org/10.1007/s12652-017-0531-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infrkm.2012.6204996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093732405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0679-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100349205", 
              "https://doi.org/10.1007/s12652-018-0679-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0853-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104099218", 
              "https://doi.org/10.1007/s12652-018-0853-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0853-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104099218", 
              "https://doi.org/10.1007/s12652-018-0853-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0853-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104099218", 
              "https://doi.org/10.1007/s12652-018-0853-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0855-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104123716", 
              "https://doi.org/10.1007/s12652-018-0855-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0855-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104123716", 
              "https://doi.org/10.1007/s12652-018-0855-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0954-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106080304", 
              "https://doi.org/10.1007/s12652-018-0954-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-0954-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106080304", 
              "https://doi.org/10.1007/s12652-018-0954-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-03", 
        "datePublishedReg": "2018-10-03", 
        "description": "This paper is positioned in the well-established field of smart home. This area of research, highly multidisciplinary, has raised a lot of attention from researchers due to the broad real life application it could serve. One of them is the assistance of the cognitively impaired persons such as head trauma victims or persons afflicted by dementia (e.g.: Alzheimer\u2019s disease). However, to propose powerful technological cognitive orthoses, the decades old challenge of human activity recognition must be addressed. In this paper, we propose a clustering method exploiting the Flocking algorithm for Activity of Daily Living (ADL) learning and recognition. In particular, our new method enables to both exploit events based data from the multimodal sensors of a smart home and qualitative spatial information extracted from a tracking method. Among the advantages of the method, the Flocking based algorithm does not require an initial number of clusters, unlike other clustering algorithms such as K-means. Two sets of real case scenarios were collected in our smart home laboratory, the LIARA. These sets were used to compare our method with traditional unsupervised algorithms and to evaluate the usefulness of the qualitative spatial information. The study shows that for traditional event based smart home data, the method outperforms the popular K-Means and Expectation-Maximization (EM) algorithms. Furthermore, the results indicate that not only the spatial data generalize, but it also further improve the performance regarding fine-grained ADLs recognition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-1070-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "Clustering of human activities from emerging movements", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1cc480444110161adb6127f3dd4dbc5782161f5e49f46ad48d0ace2a3480f42a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-1070-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107372650"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-1070-2", 
          "https://app.dimensions.ai/details/publication/pub.1107372650"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000548.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-1070-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-1070-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-1070-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-1070-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-1070-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-1070-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N69693c830a224ce882020cfb60f71cd6
    4 schema:citation sg:pub.10.1007/978-3-319-14424-5_13
    5 sg:pub.10.1007/s12652-016-0367-2
    6 sg:pub.10.1007/s12652-017-0511-7
    7 sg:pub.10.1007/s12652-017-0531-3
    8 sg:pub.10.1007/s12652-018-0679-5
    9 sg:pub.10.1007/s12652-018-0853-9
    10 sg:pub.10.1007/s12652-018-0855-7
    11 sg:pub.10.1007/s12652-018-0954-5
    12 sg:pub.10.1007/s13042-015-0367-0
    13 https://doi.org/10.1016/b978-1-55860-137-6.50008-x
    14 https://doi.org/10.1016/j.cviu.2009.06.008
    15 https://doi.org/10.1016/j.datak.2010.01.004
    16 https://doi.org/10.1016/j.pmcj.2009.10.004
    17 https://doi.org/10.1016/j.sysarc.2006.02.003
    18 https://doi.org/10.1017/s0269888913000350
    19 https://doi.org/10.1080/08839510701492579
    20 https://doi.org/10.1109/infrkm.2012.6204996
    21 https://doi.org/10.1109/mis.2015.18
    22 https://doi.org/10.1109/tpami.1984.4767478
    23 https://doi.org/10.1145/1835804.1835920
    24 https://doi.org/10.1145/2783258.2783408
    25 https://doi.org/10.1145/2971648.2971691
    26 https://doi.org/10.1145/37402.37406
    27 https://doi.org/10.2147/ceor.s44625
    28 schema:datePublished 2018-10-03
    29 schema:datePublishedReg 2018-10-03
    30 schema:description This paper is positioned in the well-established field of smart home. This area of research, highly multidisciplinary, has raised a lot of attention from researchers due to the broad real life application it could serve. One of them is the assistance of the cognitively impaired persons such as head trauma victims or persons afflicted by dementia (e.g.: Alzheimer’s disease). However, to propose powerful technological cognitive orthoses, the decades old challenge of human activity recognition must be addressed. In this paper, we propose a clustering method exploiting the Flocking algorithm for Activity of Daily Living (ADL) learning and recognition. In particular, our new method enables to both exploit events based data from the multimodal sensors of a smart home and qualitative spatial information extracted from a tracking method. Among the advantages of the method, the Flocking based algorithm does not require an initial number of clusters, unlike other clustering algorithms such as K-means. Two sets of real case scenarios were collected in our smart home laboratory, the LIARA. These sets were used to compare our method with traditional unsupervised algorithms and to evaluate the usefulness of the qualitative spatial information. The study shows that for traditional event based smart home data, the method outperforms the popular K-Means and Expectation-Maximization (EM) algorithms. Furthermore, the results indicate that not only the spatial data generalize, but it also further improve the performance regarding fine-grained ADLs recognition.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf sg:journal.1043999
    35 schema:name Clustering of human activities from emerging movements
    36 schema:pagination 1-13
    37 schema:productId N22ace24e640341bfbf135eb9746e49fb
    38 Naffaa71f822d4ebe8309b9d568756fdc
    39 Ne2d1bbf476e644e78871d5cb386cbf93
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107372650
    41 https://doi.org/10.1007/s12652-018-1070-2
    42 schema:sdDatePublished 2019-04-10T18:26
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nbe035f2ac54845e5806a86e0afe19208
    45 schema:url https://link.springer.com/10.1007%2Fs12652-018-1070-2
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N217d2b76ed8a47f8aa416db83e9670d7 rdf:first sg:person.014102265512.68
    50 rdf:rest N3f8bedc95eee48cbbc1b6b099fc7c410
    51 N22ace24e640341bfbf135eb9746e49fb schema:name readcube_id
    52 schema:value 1cc480444110161adb6127f3dd4dbc5782161f5e49f46ad48d0ace2a3480f42a
    53 rdf:type schema:PropertyValue
    54 N3f8bedc95eee48cbbc1b6b099fc7c410 rdf:first sg:person.015150332556.91
    55 rdf:rest rdf:nil
    56 N69693c830a224ce882020cfb60f71cd6 rdf:first sg:person.015353244143.26
    57 rdf:rest N8bf7a1cd06c84612825e85ad7d36c3ff
    58 N8bf7a1cd06c84612825e85ad7d36c3ff rdf:first sg:person.014026416343.67
    59 rdf:rest N217d2b76ed8a47f8aa416db83e9670d7
    60 Naffaa71f822d4ebe8309b9d568756fdc schema:name dimensions_id
    61 schema:value pub.1107372650
    62 rdf:type schema:PropertyValue
    63 Nbe035f2ac54845e5806a86e0afe19208 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ne2d1bbf476e644e78871d5cb386cbf93 schema:name doi
    66 schema:value 10.1007/s12652-018-1070-2
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Information and Computing Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Artificial Intelligence and Image Processing
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1043999 schema:issn 1868-5137
    75 1868-5145
    76 schema:name Journal of Ambient Intelligence and Humanized Computing
    77 rdf:type schema:Periodical
    78 sg:person.014026416343.67 schema:affiliation https://www.grid.ac/institutes/grid.265696.8
    79 schema:familyName Lapalu
    80 schema:givenName Jeremy
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026416343.67
    82 rdf:type schema:Person
    83 sg:person.014102265512.68 schema:affiliation https://www.grid.ac/institutes/grid.265696.8
    84 schema:familyName Bouchard
    85 schema:givenName Bruno
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102265512.68
    87 rdf:type schema:Person
    88 sg:person.015150332556.91 schema:affiliation https://www.grid.ac/institutes/grid.265696.8
    89 schema:familyName Bouzouane
    90 schema:givenName Abdenour
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150332556.91
    92 rdf:type schema:Person
    93 sg:person.015353244143.26 schema:affiliation https://www.grid.ac/institutes/grid.265696.8
    94 schema:familyName Bouchard
    95 schema:givenName Kevin
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015353244143.26
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-3-319-14424-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007438050
    99 https://doi.org/10.1007/978-3-319-14424-5_13
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s12652-016-0367-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025624924
    102 https://doi.org/10.1007/s12652-016-0367-2
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s12652-017-0511-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086108804
    105 https://doi.org/10.1007/s12652-017-0511-7
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s12652-017-0531-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090285664
    108 https://doi.org/10.1007/s12652-017-0531-3
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s12652-018-0679-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349205
    111 https://doi.org/10.1007/s12652-018-0679-5
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s12652-018-0853-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104099218
    114 https://doi.org/10.1007/s12652-018-0853-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s12652-018-0855-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104123716
    117 https://doi.org/10.1007/s12652-018-0855-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s12652-018-0954-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106080304
    120 https://doi.org/10.1007/s12652-018-0954-5
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s13042-015-0367-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008908391
    123 https://doi.org/10.1007/s13042-015-0367-0
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/b978-1-55860-137-6.50008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040827711
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.cviu.2009.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007431495
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.datak.2010.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032913342
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.pmcj.2009.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002769239
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.sysarc.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049768341
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1017/s0269888913000350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024098042
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1080/08839510701492579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042210598
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/infrkm.2012.6204996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093732405
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/mis.2015.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406510
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tpami.1984.4767478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742013
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/1835804.1835920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012923630
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/2783258.2783408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020980704
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1145/2971648.2971691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001639925
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/37402.37406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017016808
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.2147/ceor.s44625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586065
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.265696.8 schema:alternateName Université du Québec à Chicoutimi
    156 schema:name UQAC, Saguenay, Canada
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...