Research on a new automatic generation algorithm of concept map based on text analysis and association rules mining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-11

AUTHORS

Zengzhen Shao, Yancong Li, Xiao Wang, Xuechen Zhao, Yanhui Guo

ABSTRACT

As an important knowledge visualization tool, concept map has become a research hotspot in educational data mining. Traditional concept map generation algorithms are difficult to generate concept maps quickly because of their strong reliance on experts’ experience. A hybrid TA-ARM algorithm for automatic generation of concept map based on text analysis and association rule mining is proposed. The TA-ARM algorithm fully considers the association rules between concepts, uses the text classification algorithm in text analysis technology instead of manually classify the questions into concepts, and combines the association rule mining method to generate concept maps. The experimental result shows that the TA-ARM algorithm can automatically and rapidly generate the concept map, which not only reduces the impact of outside experts, but can also dynamically adjusts the concept map based on the parameters such as the threshold of confidence between test questions. The concept map generated by the TA-ARM algorithm expresses the association rules between the concepts and the degree of closeness through the associated pairs and relevant degree, and can clearly show the structural associations between concepts. The contrast experiment shows that the quality of the concept map automatically generated by the TA-ARM has a high quality and can visualize the associations between concepts and provide optimization and guidance for knowledge visualization. More... »

PAGES

1-13

References to SciGraph publications

  • 2011. Apriori Algorithm in ENCYCLOPEDIA OF MACHINE LEARNING
  • 2006-12. What is a support vector machine? in NATURE BIOTECHNOLOGY
  • 2015-12. Framework of kit-build concept map for automatic diagnosis and its preliminary use in RESEARCH AND PRACTICE IN TECHNOLOGY ENHANCED LEARNING
  • 2008-08. Applications of corpus-based semantic similarity and word segmentation to database schema matching in THE VLDB JOURNAL
  • 2003. A Study on Optimal Parameter Tuning for Rocchio Text Classifier in ADVANCES IN INFORMATION RETRIEVAL
  • 2015. Construction of Automated Concept Map of Learning Using Hashing Technique in PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014
  • 2011. Effects of a Tabletop Interface on the Co-construction of Concept Maps in HUMAN-COMPUTER INTERACTION – INTERACT 2011
  • 2015. An Efficient Data Mining Approach to Concept Map Generation for Adaptive Learning in ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS
  • 2017. Vector-Space Model in ENCYCLOPEDIA OF DATABASE SYSTEMS
  • 2017. Encyclopedia of Machine Learning and Data Mining in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-0934-9

    DOI

    http://dx.doi.org/10.1007/s12652-018-0934-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105490833


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China", 
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Zengzhen", 
            "id": "sg:person.07615037473.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yancong", 
            "id": "sg:person.012065504610.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065504610.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Normal University", 
              "id": "https://www.grid.ac/institutes/grid.410585.d", 
              "name": [
                "School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiao", 
            "id": "sg:person.012663065210.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012663065210.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Women\u2019s University", 
              "id": "https://www.grid.ac/institutes/grid.495262.e", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Xuechen", 
            "id": "sg:person.016054062471.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054062471.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong Women\u2019s University", 
              "id": "https://www.grid.ac/institutes/grid.495262.e", 
              "name": [
                "School of Data Science and Computer Science, Shandong Women\u2019s University, 250002, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Yanhui", 
            "id": "sg:person.011017664212.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017664212.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/tea.3660310109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007196016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(01)00128-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011896737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30164-8_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015237128", 
              "https://doi.org/10.1007/978-0-387-30164-8_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00778-007-0067-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015540559", 
              "https://doi.org/10.1007/s00778-007-0067-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00778-007-0067-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015540559", 
              "https://doi.org/10.1007/s00778-007-0067-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23765-2_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017132285", 
              "https://doi.org/10.1007/978-3-642-23765-2_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23765-2_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017132285", 
              "https://doi.org/10.1007/978-3-642-23765-2_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.12.1553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020879079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/lan.2004.0017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022049031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2851613.2851735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022501703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artmed.2004.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025372168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compedu.2005.11.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026329678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/170035.170072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.teln.2016.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030179917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2990508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031101289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01972243.2012.632283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035002265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0165551513494645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036262706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0165551513494645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036262706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1502650.1502718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039124560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41039-015-0018-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040430281", 
              "https://doi.org/10.1186/s41039-015-0018-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41039-015-0018-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040430281", 
              "https://doi.org/10.1186/s41039-015-0018-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41039-015-0018-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040430281", 
              "https://doi.org/10.1186/s41039-015-0018-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2006.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043747056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20910-4_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044913728", 
              "https://doi.org/10.1007/978-3-319-20910-4_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-11933-5_64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046723700", 
              "https://doi.org/10.1007/978-3-319-11933-5_64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36618-0_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047791641", 
              "https://doi.org/10.1007/3-540-36618-0_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1206-1565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051026888", 
              "https://doi.org/10.1038/nbt1206-1565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1206-1565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051026888", 
              "https://doi.org/10.1038/nbt1206-1565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052503713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mis.2014.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061406476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/tech.2007.s697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064202505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3102/1076998616666808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070973334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3102/1076998616666808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070973334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7687-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084844808", 
              "https://doi.org/10.1007/978-1-4899-7687-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7687-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084844808", 
              "https://doi.org/10.1007/978-1-4899-7687-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compedu.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091051983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/16-sts602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091468108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7993-3_918-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091564151", 
              "https://doi.org/10.1007/978-1-4899-7993-3_918-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12973/ejmste/78195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092107421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icalt.2006.1652537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094443290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nabic.2011.6089624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094447746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scp.2015.7342234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095685970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iiai-aai.2017.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095686164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139173469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098663941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005554702480254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099466841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12948/issn14531305/21.4.2017.04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100146866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3167132.3234663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105354256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3167132.3234663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105354256"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-11", 
        "datePublishedReg": "2018-07-11", 
        "description": "As an important knowledge visualization tool, concept map has become a research hotspot in educational data mining. Traditional concept map generation algorithms are difficult to generate concept maps quickly because of their strong reliance on experts\u2019 experience. A hybrid TA-ARM algorithm for automatic generation of concept map based on text analysis and association rule mining is proposed. The TA-ARM algorithm fully considers the association rules between concepts, uses the text classification algorithm in text analysis technology instead of manually classify the questions into concepts, and combines the association rule mining method to generate concept maps. The experimental result shows that the TA-ARM algorithm can automatically and rapidly generate the concept map, which not only reduces the impact of outside experts, but can also dynamically adjusts the concept map based on the parameters such as the threshold of confidence between test questions. The concept map generated by the TA-ARM algorithm expresses the association rules between the concepts and the degree of closeness through the associated pairs and relevant degree, and can clearly show the structural associations between concepts. The contrast experiment shows that the quality of the concept map automatically generated by the TA-ARM has a high quality and can visualize the associations between concepts and provide optimization and guidance for knowledge visualization.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-0934-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "Research on a new automatic generation algorithm of concept map based on text analysis and association rules mining", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ceb6188b505d1eca225644d22e208100a764a7d603d620e7bc93995adeb5b609"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-0934-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105490833"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-0934-9", 
          "https://app.dimensions.ai/details/publication/pub.1105490833"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-0934-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0934-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0934-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0934-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0934-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-0934-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N07ab410bde444269847583341981a54d
    4 schema:citation sg:pub.10.1007/3-540-36618-0_30
    5 sg:pub.10.1007/978-0-387-30164-8_27
    6 sg:pub.10.1007/978-1-4899-7687-1
    7 sg:pub.10.1007/978-1-4899-7993-3_918-2
    8 sg:pub.10.1007/978-3-319-11933-5_64
    9 sg:pub.10.1007/978-3-319-20910-4_18
    10 sg:pub.10.1007/978-3-642-23765-2_31
    11 sg:pub.10.1007/s00778-007-0067-9
    12 sg:pub.10.1038/nbt1206-1565
    13 sg:pub.10.1186/s41039-015-0018-9
    14 https://doi.org/10.1002/tea.3660310109
    15 https://doi.org/10.1016/j.artmed.2004.03.006
    16 https://doi.org/10.1016/j.compedu.2005.11.020
    17 https://doi.org/10.1016/j.compedu.2017.08.001
    18 https://doi.org/10.1016/j.eswa.2006.04.005
    19 https://doi.org/10.1016/j.eswa.2007.06.013
    20 https://doi.org/10.1016/j.eswa.2012.11.018
    21 https://doi.org/10.1016/j.teln.2016.02.001
    22 https://doi.org/10.1016/s0169-2070(01)00128-5
    23 https://doi.org/10.1017/cbo9781139173469
    24 https://doi.org/10.1080/01972243.2012.632283
    25 https://doi.org/10.1093/bioinformatics/18.12.1553
    26 https://doi.org/10.1109/icalt.2006.1652537
    27 https://doi.org/10.1109/iiai-aai.2017.165
    28 https://doi.org/10.1109/mis.2014.42
    29 https://doi.org/10.1109/nabic.2011.6089624
    30 https://doi.org/10.1109/scp.2015.7342234
    31 https://doi.org/10.1145/1502650.1502718
    32 https://doi.org/10.1145/170035.170072
    33 https://doi.org/10.1145/2851613.2851735
    34 https://doi.org/10.1145/2990508
    35 https://doi.org/10.1145/3167132.3234663
    36 https://doi.org/10.1177/0165551513494645
    37 https://doi.org/10.1198/tech.2007.s697
    38 https://doi.org/10.1214/16-sts602
    39 https://doi.org/10.12948/issn14531305/21.4.2017.04
    40 https://doi.org/10.12973/ejmste/78195
    41 https://doi.org/10.1353/lan.2004.0017
    42 https://doi.org/10.3102/1076998616666808
    43 https://doi.org/10.5220/0005554702480254
    44 schema:datePublished 2018-07-11
    45 schema:datePublishedReg 2018-07-11
    46 schema:description As an important knowledge visualization tool, concept map has become a research hotspot in educational data mining. Traditional concept map generation algorithms are difficult to generate concept maps quickly because of their strong reliance on experts’ experience. A hybrid TA-ARM algorithm for automatic generation of concept map based on text analysis and association rule mining is proposed. The TA-ARM algorithm fully considers the association rules between concepts, uses the text classification algorithm in text analysis technology instead of manually classify the questions into concepts, and combines the association rule mining method to generate concept maps. The experimental result shows that the TA-ARM algorithm can automatically and rapidly generate the concept map, which not only reduces the impact of outside experts, but can also dynamically adjusts the concept map based on the parameters such as the threshold of confidence between test questions. The concept map generated by the TA-ARM algorithm expresses the association rules between the concepts and the degree of closeness through the associated pairs and relevant degree, and can clearly show the structural associations between concepts. The contrast experiment shows that the quality of the concept map automatically generated by the TA-ARM has a high quality and can visualize the associations between concepts and provide optimization and guidance for knowledge visualization.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf sg:journal.1043999
    51 schema:name Research on a new automatic generation algorithm of concept map based on text analysis and association rules mining
    52 schema:pagination 1-13
    53 schema:productId N3d788510c7774a53b1505fdfb8522805
    54 N45fbb04f01ad43d194aaa0f3c27752e6
    55 N9303983e3e074142aea4e2faf38031e2
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105490833
    57 https://doi.org/10.1007/s12652-018-0934-9
    58 schema:sdDatePublished 2019-04-11T12:43
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Nde701ba7ce7e4797a4a728fdec684b86
    61 schema:url https://link.springer.com/10.1007%2Fs12652-018-0934-9
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N07ab410bde444269847583341981a54d rdf:first sg:person.07615037473.39
    66 rdf:rest Nbd19f2c8105f4a20a24edf65628aec70
    67 N35c8d06da4324787b01c64123aefdc77 rdf:first sg:person.016054062471.60
    68 rdf:rest N6af57a447b4e4fc28a7f2acaec9c1b49
    69 N3d788510c7774a53b1505fdfb8522805 schema:name dimensions_id
    70 schema:value pub.1105490833
    71 rdf:type schema:PropertyValue
    72 N45fbb04f01ad43d194aaa0f3c27752e6 schema:name readcube_id
    73 schema:value ceb6188b505d1eca225644d22e208100a764a7d603d620e7bc93995adeb5b609
    74 rdf:type schema:PropertyValue
    75 N6af57a447b4e4fc28a7f2acaec9c1b49 rdf:first sg:person.011017664212.30
    76 rdf:rest rdf:nil
    77 N9303983e3e074142aea4e2faf38031e2 schema:name doi
    78 schema:value 10.1007/s12652-018-0934-9
    79 rdf:type schema:PropertyValue
    80 Na71882abb1e04b3a8f6d980f7858c8cd rdf:first sg:person.012663065210.18
    81 rdf:rest N35c8d06da4324787b01c64123aefdc77
    82 Nbd19f2c8105f4a20a24edf65628aec70 rdf:first sg:person.012065504610.35
    83 rdf:rest Na71882abb1e04b3a8f6d980f7858c8cd
    84 Nde701ba7ce7e4797a4a728fdec684b86 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Information and Computing Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Artificial Intelligence and Image Processing
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1043999 schema:issn 1868-5137
    93 1868-5145
    94 schema:name Journal of Ambient Intelligence and Humanized Computing
    95 rdf:type schema:Periodical
    96 sg:person.011017664212.30 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
    97 schema:familyName Guo
    98 schema:givenName Yanhui
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017664212.30
    100 rdf:type schema:Person
    101 sg:person.012065504610.35 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    102 schema:familyName Li
    103 schema:givenName Yancong
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065504610.35
    105 rdf:type schema:Person
    106 sg:person.012663065210.18 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    107 schema:familyName Wang
    108 schema:givenName Xiao
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012663065210.18
    110 rdf:type schema:Person
    111 sg:person.016054062471.60 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
    112 schema:familyName Zhao
    113 schema:givenName Xuechen
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054062471.60
    115 rdf:type schema:Person
    116 sg:person.07615037473.39 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
    117 schema:familyName Shao
    118 schema:givenName Zengzhen
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39
    120 rdf:type schema:Person
    121 sg:pub.10.1007/3-540-36618-0_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047791641
    122 https://doi.org/10.1007/3-540-36618-0_30
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-0-387-30164-8_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015237128
    125 https://doi.org/10.1007/978-0-387-30164-8_27
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-1-4899-7687-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084844808
    128 https://doi.org/10.1007/978-1-4899-7687-1
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-1-4899-7993-3_918-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091564151
    131 https://doi.org/10.1007/978-1-4899-7993-3_918-2
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-319-11933-5_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046723700
    134 https://doi.org/10.1007/978-3-319-11933-5_64
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-319-20910-4_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044913728
    137 https://doi.org/10.1007/978-3-319-20910-4_18
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-642-23765-2_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017132285
    140 https://doi.org/10.1007/978-3-642-23765-2_31
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s00778-007-0067-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015540559
    143 https://doi.org/10.1007/s00778-007-0067-9
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nbt1206-1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026888
    146 https://doi.org/10.1038/nbt1206-1565
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1186/s41039-015-0018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040430281
    149 https://doi.org/10.1186/s41039-015-0018-9
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1002/tea.3660310109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196016
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.artmed.2004.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014886
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.compedu.2005.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026329678
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.compedu.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051983
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.eswa.2006.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747056
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.eswa.2007.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025372168
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.eswa.2012.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503713
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.teln.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030179917
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/s0169-2070(01)00128-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011896737
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1017/cbo9781139173469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663941
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1080/01972243.2012.632283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035002265
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1093/bioinformatics/18.12.1553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020879079
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/icalt.2006.1652537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094443290
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/iiai-aai.2017.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686164
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/mis.2014.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406476
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/nabic.2011.6089624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094447746
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/scp.2015.7342234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095685970
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1145/1502650.1502718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039124560
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/2851613.2851735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022501703
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1145/2990508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101289
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1145/3167132.3234663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105354256
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1177/0165551513494645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036262706
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1198/tech.2007.s697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064202505
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1214/16-sts602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091468108
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.12948/issn14531305/21.4.2017.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100146866
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.12973/ejmste/78195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092107421
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1353/lan.2004.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022049031
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.3102/1076998616666808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070973334
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.5220/0005554702480254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099466841
    210 rdf:type schema:CreativeWork
    211 https://www.grid.ac/institutes/grid.410585.d schema:alternateName Shandong Normal University
    212 schema:name School of Data Science and Computer Science, Shandong Women’s University, 250002, Jinan, China
    213 School of Information Science and Engineering, Shandong Normal University, 250014, Jinan, China
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
    216 schema:name School of Data Science and Computer Science, Shandong Women’s University, 250002, Jinan, China
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...