Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Shib Sankar Sana, Holman Ospina-Mateus, Fabian Gazabón Arrieta, Jaime Acevedo Chedid

ABSTRACT

This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time. More... »

PAGES

2063-2090

References to SciGraph publications

  • 2012-05. GA and ICA approaches to job rotation scheduling problem: considering employee’s boredom in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-03. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-12. Effects of job rotation and role stress among nurses on job satisfaction and organizational commitment in BMC HEALTH SERVICES RESEARCH
  • 2012-06. A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-07. Reducing ergonomic risks by job rotation scheduling in OR SPECTRUM
  • 2013-08. Prevalence and impacts of low back pain among peasant farmers in South-West Nigeria in INTERNATIONAL JOURNAL OF OCCUPATIONAL MEDICINE AND ENVIRONMENTAL HEALTH
  • 2016-12. A Comparative Study of Non-traditional Methods for Vehicle Crashworthiness and NVH Optimization in ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-0814-3

    DOI

    http://dx.doi.org/10.1007/s12652-018-0814-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103953950


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, Bhangar Mahavidyalaya, South 24 Parganas, 743502, Bhangar, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sana", 
            "givenName": "Shib Sankar", 
            "id": "sg:person.010140374117.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010140374117.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Tecnol\u00f3gica de Bol\u00edvar", 
              "id": "https://www.grid.ac/institutes/grid.441684.b", 
              "name": [
                "Department of Industrial Engineering, Universidad Tecnol\u00f3gica de Bolivar, Cartagena, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ospina-Mateus", 
            "givenName": "Holman", 
            "id": "sg:person.015213744111.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213744111.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Tecnol\u00f3gica de Bol\u00edvar", 
              "id": "https://www.grid.ac/institutes/grid.441684.b", 
              "name": [
                "Department of Industrial Engineering, Universidad Tecnol\u00f3gica de Bolivar, Cartagena, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arrieta", 
            "givenName": "Fabian Gazab\u00f3n", 
            "id": "sg:person.011547760374.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547760374.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Tecnol\u00f3gica de Bol\u00edvar", 
              "id": "https://www.grid.ac/institutes/grid.441684.b", 
              "name": [
                "Department of Industrial Engineering, Universidad Tecnol\u00f3gica de Bolivar, Cartagena, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chedid", 
            "givenName": "Jaime Acevedo", 
            "id": "sg:person.014402652076.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402652076.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijpe.2009.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000325337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/occmed/kqi082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001178184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apergo.2016.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005433177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ergon.2012.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005976402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1063293x06063314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006074036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1063293x06063314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006074036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3641-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006110283", 
              "https://doi.org/10.1007/s00170-011-3641-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/001979390605900407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006631347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/001979390605900407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006631347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-6870(77)90164-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007251116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-6870(77)90164-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007251116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207540500057621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008330280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2012.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009819660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/14691931211225021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010847655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/001401300184404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011611259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207543.2011.653452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012798958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15428110308984833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013980327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/001401303000090161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014097622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140130903380893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014262060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02678370210141530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015424644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-012-0291-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015835629", 
              "https://doi.org/10.1007/s00291-012-0291-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-012-0291-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015835629", 
              "https://doi.org/10.1007/s00291-012-0291-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3496-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019168294", 
              "https://doi.org/10.1007/s00170-011-3496-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140130500247545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019250398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirpj.2010.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019517329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6963-9-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022454956", 
              "https://doi.org/10.1186/1472-6963-9-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2009.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023208095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140130701674364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.02.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024220613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2478/s13382-013-0135-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025517686", 
              "https://doi.org/10.2478/s13382-013-0135-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ergon.2008.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025698469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026904653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ergon.2008.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027602622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2006.09.082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029228638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/001401399185054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029400172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207543.2010.492797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030397188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-8141(02)00195-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032703662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-8141(02)00195-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032703662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apergo.2006.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033135916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15428119591016863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033188976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15459620590894760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033401361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140130701674331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034082954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ergon.2008.07.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034548999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3672-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039392160", 
              "https://doi.org/10.1007/s00170-011-3672-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140139108964855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040252440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2011.03.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043750694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-6870(93)90080-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044346834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-6870(93)90080-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044346834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/21693277.2016.1204961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045527842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2012.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046218358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09585190410001677331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047345050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2007.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049732662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2009.03.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050261467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2012.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051757330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2012.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051757330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11831-015-9155-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051846973", 
              "https://doi.org/10.1007/s11831-015-9155-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jleo/ewh039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059803739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4003038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062143382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3139/120.110819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071028311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3139/120.110823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071028315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4995/wpom.v4i2.1164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072532024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/wor-2012-0355-1572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078514453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijvd.2017.082578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084321067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijvd.2017.082579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084321068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijvd.2017.082593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084321075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijvd.2017.082603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084321077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3139/120.111024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085306723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.1999.782544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095535114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/978-1-4666-2086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096034305"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-0814-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry", 
        "pagination": "2063-2090", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c29f420d453ccf37ba3f2e23fdf46ccd88614eaff2a8bc948f32cb7377a5e10d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-0814-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103953950"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-0814-3", 
          "https://app.dimensions.ai/details/publication/pub.1103953950"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-0814-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0814-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0814-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0814-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0814-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      89 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-0814-3 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N5ade7b7c7f1b4215aaf88b6690c42aea
    4 schema:citation sg:pub.10.1007/s00170-011-3496-y
    5 sg:pub.10.1007/s00170-011-3641-7
    6 sg:pub.10.1007/s00170-011-3672-0
    7 sg:pub.10.1007/s00291-012-0291-6
    8 sg:pub.10.1007/s11831-015-9155-y
    9 sg:pub.10.1186/1472-6963-9-8
    10 sg:pub.10.2478/s13382-013-0135-x
    11 https://doi.org/10.1016/0003-6870(77)90164-8
    12 https://doi.org/10.1016/0003-6870(93)90080-s
    13 https://doi.org/10.1016/j.amc.2006.09.082
    14 https://doi.org/10.1016/j.amc.2007.12.006
    15 https://doi.org/10.1016/j.amc.2009.03.037
    16 https://doi.org/10.1016/j.apergo.2006.04.006
    17 https://doi.org/10.1016/j.apergo.2016.11.005
    18 https://doi.org/10.1016/j.cirp.2011.03.037
    19 https://doi.org/10.1016/j.cirpj.2010.03.009
    20 https://doi.org/10.1016/j.engappai.2012.05.014
    21 https://doi.org/10.1016/j.ergon.2008.02.006
    22 https://doi.org/10.1016/j.ergon.2008.05.001
    23 https://doi.org/10.1016/j.ergon.2008.07.009
    24 https://doi.org/10.1016/j.ergon.2012.07.003
    25 https://doi.org/10.1016/j.eswa.2012.02.140
    26 https://doi.org/10.1016/j.ijpe.2009.07.007
    27 https://doi.org/10.1016/j.ijpe.2009.07.010
    28 https://doi.org/10.1016/j.ijpe.2012.09.011
    29 https://doi.org/10.1016/j.ijpe.2015.06.017
    30 https://doi.org/10.1016/j.ins.2012.03.005
    31 https://doi.org/10.1016/s0169-8141(02)00195-6
    32 https://doi.org/10.1080/001401300184404
    33 https://doi.org/10.1080/001401303000090161
    34 https://doi.org/10.1080/00140130500247545
    35 https://doi.org/10.1080/00140130701674331
    36 https://doi.org/10.1080/00140130701674364
    37 https://doi.org/10.1080/00140130903380893
    38 https://doi.org/10.1080/00140139108964855
    39 https://doi.org/10.1080/001401399185054
    40 https://doi.org/10.1080/00207540500057621
    41 https://doi.org/10.1080/00207543.2010.492797
    42 https://doi.org/10.1080/00207543.2011.653452
    43 https://doi.org/10.1080/02678370210141530
    44 https://doi.org/10.1080/09585190410001677331
    45 https://doi.org/10.1080/15428110308984833
    46 https://doi.org/10.1080/15428119591016863
    47 https://doi.org/10.1080/15459620590894760
    48 https://doi.org/10.1080/21693277.2016.1204961
    49 https://doi.org/10.1093/jleo/ewh039
    50 https://doi.org/10.1093/occmed/kqi082
    51 https://doi.org/10.1108/14691931211225021
    52 https://doi.org/10.1109/cec.1999.782544
    53 https://doi.org/10.1115/1.4003038
    54 https://doi.org/10.1177/001979390605900407
    55 https://doi.org/10.1177/1063293x06063314
    56 https://doi.org/10.1504/ijvd.2017.082578
    57 https://doi.org/10.1504/ijvd.2017.082579
    58 https://doi.org/10.1504/ijvd.2017.082593
    59 https://doi.org/10.1504/ijvd.2017.082603
    60 https://doi.org/10.3139/120.110819
    61 https://doi.org/10.3139/120.110823
    62 https://doi.org/10.3139/120.111024
    63 https://doi.org/10.3233/wor-2012-0355-1572
    64 https://doi.org/10.4018/978-1-4666-2086-5
    65 https://doi.org/10.4995/wpom.v4i2.1164
    66 schema:datePublished 2019-05
    67 schema:datePublishedReg 2019-05-01
    68 schema:description This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree false
    72 schema:isPartOf N0d4b7eea057f4e929464fdca80d9f499
    73 Ne177eceaf42f49cca253ed2f78600096
    74 sg:journal.1043999
    75 schema:name Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry
    76 schema:pagination 2063-2090
    77 schema:productId N53030adafe834919aeb6dcb02b6af99b
    78 Nb193b0b87c774cf48543f70c9a5ebc4e
    79 Nd0bde9b63d214aa6b77457cd96eadae6
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103953950
    81 https://doi.org/10.1007/s12652-018-0814-3
    82 schema:sdDatePublished 2019-04-11T13:47
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N365a923eb2814e51833a6183d0461909
    85 schema:url https://link.springer.com/10.1007%2Fs12652-018-0814-3
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N0d4b7eea057f4e929464fdca80d9f499 schema:issueNumber 5
    90 rdf:type schema:PublicationIssue
    91 N365a923eb2814e51833a6183d0461909 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N53030adafe834919aeb6dcb02b6af99b schema:name readcube_id
    94 schema:value c29f420d453ccf37ba3f2e23fdf46ccd88614eaff2a8bc948f32cb7377a5e10d
    95 rdf:type schema:PropertyValue
    96 N5ade7b7c7f1b4215aaf88b6690c42aea rdf:first sg:person.010140374117.71
    97 rdf:rest N8abba01724774718bd3543a5bb8ee903
    98 N63df6ab3ac29422a9d2535049be060d4 rdf:first sg:person.011547760374.78
    99 rdf:rest Nea321ba6fcf241ca9715c45cf07d3944
    100 N79e24156d3e1413f884b1708624dcc62 schema:name Department of Mathematics, Bhangar Mahavidyalaya, South 24 Parganas, 743502, Bhangar, India
    101 rdf:type schema:Organization
    102 N8abba01724774718bd3543a5bb8ee903 rdf:first sg:person.015213744111.45
    103 rdf:rest N63df6ab3ac29422a9d2535049be060d4
    104 Nb193b0b87c774cf48543f70c9a5ebc4e schema:name dimensions_id
    105 schema:value pub.1103953950
    106 rdf:type schema:PropertyValue
    107 Nd0bde9b63d214aa6b77457cd96eadae6 schema:name doi
    108 schema:value 10.1007/s12652-018-0814-3
    109 rdf:type schema:PropertyValue
    110 Ne177eceaf42f49cca253ed2f78600096 schema:volumeNumber 10
    111 rdf:type schema:PublicationVolume
    112 Nea321ba6fcf241ca9715c45cf07d3944 rdf:first sg:person.014402652076.56
    113 rdf:rest rdf:nil
    114 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Mathematical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Numerical and Computational Mathematics
    119 rdf:type schema:DefinedTerm
    120 sg:journal.1043999 schema:issn 1868-5137
    121 1868-5145
    122 schema:name Journal of Ambient Intelligence and Humanized Computing
    123 rdf:type schema:Periodical
    124 sg:person.010140374117.71 schema:affiliation N79e24156d3e1413f884b1708624dcc62
    125 schema:familyName Sana
    126 schema:givenName Shib Sankar
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010140374117.71
    128 rdf:type schema:Person
    129 sg:person.011547760374.78 schema:affiliation https://www.grid.ac/institutes/grid.441684.b
    130 schema:familyName Arrieta
    131 schema:givenName Fabian Gazabón
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547760374.78
    133 rdf:type schema:Person
    134 sg:person.014402652076.56 schema:affiliation https://www.grid.ac/institutes/grid.441684.b
    135 schema:familyName Chedid
    136 schema:givenName Jaime Acevedo
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402652076.56
    138 rdf:type schema:Person
    139 sg:person.015213744111.45 schema:affiliation https://www.grid.ac/institutes/grid.441684.b
    140 schema:familyName Ospina-Mateus
    141 schema:givenName Holman
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213744111.45
    143 rdf:type schema:Person
    144 sg:pub.10.1007/s00170-011-3496-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168294
    145 https://doi.org/10.1007/s00170-011-3496-y
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00170-011-3641-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006110283
    148 https://doi.org/10.1007/s00170-011-3641-7
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00170-011-3672-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039392160
    151 https://doi.org/10.1007/s00170-011-3672-0
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00291-012-0291-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015835629
    154 https://doi.org/10.1007/s00291-012-0291-6
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11831-015-9155-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051846973
    157 https://doi.org/10.1007/s11831-015-9155-y
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1186/1472-6963-9-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022454956
    160 https://doi.org/10.1186/1472-6963-9-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.2478/s13382-013-0135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025517686
    163 https://doi.org/10.2478/s13382-013-0135-x
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0003-6870(77)90164-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007251116
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0003-6870(93)90080-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1044346834
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.amc.2006.09.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029228638
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.amc.2007.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049732662
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.amc.2009.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050261467
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.apergo.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033135916
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.apergo.2016.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005433177
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.cirp.2011.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043750694
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.cirpj.2010.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019517329
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.engappai.2012.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218358
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.ergon.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025698469
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.ergon.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602622
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.ergon.2008.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034548999
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.ergon.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005976402
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.eswa.2012.02.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220613
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.ijpe.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000325337
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.ijpe.2009.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023208095
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.ijpe.2012.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819660
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.ijpe.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904653
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.ins.2012.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051757330
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0169-8141(02)00195-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032703662
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1080/001401300184404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011611259
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/001401303000090161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097622
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1080/00140130500247545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019250398
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1080/00140130701674331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034082954
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1080/00140130701674364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024204295
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1080/00140130903380893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262060
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1080/00140139108964855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040252440
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1080/001401399185054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029400172
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1080/00207540500057621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008330280
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1080/00207543.2010.492797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030397188
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1080/00207543.2011.653452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012798958
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1080/02678370210141530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015424644
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1080/09585190410001677331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047345050
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1080/15428110308984833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013980327
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1080/15428119591016863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033188976
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1080/15459620590894760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033401361
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1080/21693277.2016.1204961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045527842
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/jleo/ewh039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059803739
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/occmed/kqi082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178184
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1108/14691931211225021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010847655
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/cec.1999.782544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095535114
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1115/1.4003038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062143382
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1177/001979390605900407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006631347
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1177/1063293x06063314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006074036
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1504/ijvd.2017.082578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084321067
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1504/ijvd.2017.082579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084321068
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1504/ijvd.2017.082593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084321075
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1504/ijvd.2017.082603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084321077
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.3139/120.110819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071028311
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.3139/120.110823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071028315
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3139/120.111024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085306723
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3233/wor-2012-0355-1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078514453
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.4018/978-1-4666-2086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096034305
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.4995/wpom.v4i2.1164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072532024
    274 rdf:type schema:CreativeWork
    275 https://www.grid.ac/institutes/grid.441684.b schema:alternateName Universidad Tecnológica de Bolívar
    276 schema:name Department of Industrial Engineering, Universidad Tecnológica de Bolivar, Cartagena, Colombia
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...