Feature space learning model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-05

AUTHORS

Renchu Guan, Xu Wang, Maurizio Marchese, Mary Qu Yang, Yanchun Liang, Chen Yang

ABSTRACT

With the massive volume and rapid increasing of data, feature space study is of great importance. To avoid the complex training processes in deep learning models which project original feature space into low-dimensional ones, we propose a novel feature space learning (FSL) model. The main contributions in our approach are: (1) FSL can not only select useful features but also adaptively update feature values and span new feature spaces; (2) four FSL algorithms are proposed with the feature space updating procedure; (3) FSL can provide a better data understanding and learn descriptive and compact feature spaces without the tough training for deep architectures. Experimental results on benchmark data sets demonstrate that FSL-based algorithms performed better than the classical unsupervised, semi-supervised learning and even incremental semi-supervised algorithms. In addition, we show a visualization of the learned feature space results. With the carefully designed learning strategy, FSL dynamically disentangles explanatory factors, depresses the noise accumulation and semantic shift, and constructs easy-to-understand feature spaces. More... »

PAGES

2029-2040

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12652-018-0805-4

DOI

http://dx.doi.org/10.1007/s12652-018-0805-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103879347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guan", 
        "givenName": "Renchu", 
        "id": "sg:person.010147752771.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147752771.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xu", 
        "id": "sg:person.015634767054.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634767054.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Department of Engineering and Computer Science, University of Trento, 9I-38123, Povo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchese", 
        "givenName": "Maurizio", 
        "id": "sg:person.015022132271.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022132271.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas for Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.241054.6", 
          "name": [
            "MidSouth Bioinformatics Center and Joint Bioinformatics, University of Arkansas at Little Rock and University of Arkansas Medical Sciences, 72204, Little Rock, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Mary Qu", 
        "id": "sg:person.01276145147.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276145147.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
            "Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, 519041, Zhuhai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yanchun", 
        "id": "sg:person.01356675436.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356675436.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "College of Earth Sciences, Jilin University, 130061, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chen", 
        "id": "sg:person.014411317765.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411317765.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0005372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003201349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1127647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004607132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2466.2000.tb02843.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013039097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014940366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016816323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2013.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025111269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307752101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026144033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/331499.331504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026347712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1281192.1281268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040178460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041161194", 
          "https://doi.org/10.1038/nature03459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041161194", 
          "https://doi.org/10.1038/nature03459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2401-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054517546", 
          "https://doi.org/10.1007/s00521-016-2401-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2401-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054517546", 
          "https://doi.org/10.1007/s00521-016-2401-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.1000236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2108315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2186825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2014.2299812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074217286", 
          "https://doi.org/10.1038/nature21056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074217286", 
          "https://doi.org/10.1038/nature21056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074217286", 
          "https://doi.org/10.1038/nature21056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2695539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084948479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2695539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084948479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2695539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084948479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2009.5178973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094488547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-017-0671-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100315887", 
          "https://doi.org/10.1007/s12652-017-0671-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-017-0660-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100859978", 
          "https://doi.org/10.1007/s12652-017-0660-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "With the massive volume and rapid increasing of data, feature space study is of great importance. To avoid the complex training processes in deep learning models which project original feature space into low-dimensional ones, we propose a novel feature space learning (FSL) model. The main contributions in our approach are: (1) FSL can not only select useful features but also adaptively update feature values and span new feature spaces; (2) four FSL algorithms are proposed with the feature space updating procedure; (3) FSL can provide a better data understanding and learn descriptive and compact feature spaces without the tough training for deep architectures. Experimental results on benchmark data sets demonstrate that FSL-based algorithms performed better than the classical unsupervised, semi-supervised learning and even incremental semi-supervised algorithms. In addition, we show a visualization of the learned feature space results. With the carefully designed learning strategy, FSL dynamically disentangles explanatory factors, depresses the noise accumulation and semantic shift, and constructs easy-to-understand feature spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12652-018-0805-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4104113", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7200432", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043999", 
        "issn": [
          "1868-5137", 
          "1868-5145"
        ], 
        "name": "Journal of Ambient Intelligence and Humanized Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Feature space learning model", 
    "pagination": "2029-2040", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54650f6956617e4f3fc7cefa6ad0322dfb02294823ae589fa852d9267728ca9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12652-018-0805-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103879347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12652-018-0805-4", 
      "https://app.dimensions.ai/details/publication/pub.1103879347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12652-018-0805-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0805-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0805-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0805-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0805-4'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12652-018-0805-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N119c3e4c8ac9417c87e863fc95c5c53a
4 schema:citation sg:pub.10.1007/s00521-016-2401-x
5 sg:pub.10.1007/s12652-017-0660-8
6 sg:pub.10.1007/s12652-017-0671-5
7 sg:pub.10.1038/nature03459
8 sg:pub.10.1038/nature21056
9 https://doi.org/10.1016/j.knosys.2013.03.012
10 https://doi.org/10.1073/pnas.0307752101
11 https://doi.org/10.1109/34.1000236
12 https://doi.org/10.1109/ijcnn.2009.5178973
13 https://doi.org/10.1109/tkde.2010.144
14 https://doi.org/10.1109/tnn.2011.2108315
15 https://doi.org/10.1109/tnnls.2012.2186825
16 https://doi.org/10.1109/tpami.2011.167
17 https://doi.org/10.1109/tpami.2013.50
18 https://doi.org/10.1109/tpami.2014.2299812
19 https://doi.org/10.1109/tpami.2017.2695539
20 https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
21 https://doi.org/10.1111/j.1460-2466.2000.tb02843.x
22 https://doi.org/10.1126/science.1127647
23 https://doi.org/10.1126/science.1136800
24 https://doi.org/10.1145/1281192.1281268
25 https://doi.org/10.1145/331499.331504
26 https://doi.org/10.1145/775047.775061
27 https://doi.org/10.1371/journal.pone.0005372
28 schema:datePublished 2019-05
29 schema:datePublishedReg 2019-05-01
30 schema:description With the massive volume and rapid increasing of data, feature space study is of great importance. To avoid the complex training processes in deep learning models which project original feature space into low-dimensional ones, we propose a novel feature space learning (FSL) model. The main contributions in our approach are: (1) FSL can not only select useful features but also adaptively update feature values and span new feature spaces; (2) four FSL algorithms are proposed with the feature space updating procedure; (3) FSL can provide a better data understanding and learn descriptive and compact feature spaces without the tough training for deep architectures. Experimental results on benchmark data sets demonstrate that FSL-based algorithms performed better than the classical unsupervised, semi-supervised learning and even incremental semi-supervised algorithms. In addition, we show a visualization of the learned feature space results. With the carefully designed learning strategy, FSL dynamically disentangles explanatory factors, depresses the noise accumulation and semantic shift, and constructs easy-to-understand feature spaces.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N052649124e244207a6a521cf1ee59511
35 Nd52080f4575247218e10e23052a962a1
36 sg:journal.1043999
37 schema:name Feature space learning model
38 schema:pagination 2029-2040
39 schema:productId N78a99ac13faa4c478fd7f281a32a141e
40 Nb1f05209c22f4a56b1b08988fa3e3818
41 Nbc64198f7c5e4059a413ed559dc5b849
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103879347
43 https://doi.org/10.1007/s12652-018-0805-4
44 schema:sdDatePublished 2019-04-11T13:52
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8c192d46bbd244ab8ad8f295cf270784
47 schema:url https://link.springer.com/10.1007%2Fs12652-018-0805-4
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N052649124e244207a6a521cf1ee59511 schema:volumeNumber 10
52 rdf:type schema:PublicationVolume
53 N119c3e4c8ac9417c87e863fc95c5c53a rdf:first sg:person.010147752771.99
54 rdf:rest N36edc7023dce4585b13c1f57414eafce
55 N36edc7023dce4585b13c1f57414eafce rdf:first sg:person.015634767054.88
56 rdf:rest N6e526faefccf4cb5a236bcdbb65744d2
57 N55386f3907f04105bf873685e352dd77 rdf:first sg:person.014411317765.11
58 rdf:rest rdf:nil
59 N5aa25ec4715d43f38e2bd0b38b333f75 rdf:first sg:person.01276145147.59
60 rdf:rest N78965a3f17d94d01b129bac00765b3fe
61 N6e526faefccf4cb5a236bcdbb65744d2 rdf:first sg:person.015022132271.13
62 rdf:rest N5aa25ec4715d43f38e2bd0b38b333f75
63 N78965a3f17d94d01b129bac00765b3fe rdf:first sg:person.01356675436.56
64 rdf:rest N55386f3907f04105bf873685e352dd77
65 N78a99ac13faa4c478fd7f281a32a141e schema:name dimensions_id
66 schema:value pub.1103879347
67 rdf:type schema:PropertyValue
68 N8c192d46bbd244ab8ad8f295cf270784 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb1f05209c22f4a56b1b08988fa3e3818 schema:name readcube_id
71 schema:value 54650f6956617e4f3fc7cefa6ad0322dfb02294823ae589fa852d9267728ca9d
72 rdf:type schema:PropertyValue
73 Nbc64198f7c5e4059a413ed559dc5b849 schema:name doi
74 schema:value 10.1007/s12652-018-0805-4
75 rdf:type schema:PropertyValue
76 Nd52080f4575247218e10e23052a962a1 schema:issueNumber 5
77 rdf:type schema:PublicationIssue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:grant.4104113 http://pending.schema.org/fundedItem sg:pub.10.1007/s12652-018-0805-4
85 rdf:type schema:MonetaryGrant
86 sg:grant.7200432 http://pending.schema.org/fundedItem sg:pub.10.1007/s12652-018-0805-4
87 rdf:type schema:MonetaryGrant
88 sg:journal.1043999 schema:issn 1868-5137
89 1868-5145
90 schema:name Journal of Ambient Intelligence and Humanized Computing
91 rdf:type schema:Periodical
92 sg:person.010147752771.99 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
93 schema:familyName Guan
94 schema:givenName Renchu
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147752771.99
96 rdf:type schema:Person
97 sg:person.01276145147.59 schema:affiliation https://www.grid.ac/institutes/grid.241054.6
98 schema:familyName Yang
99 schema:givenName Mary Qu
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276145147.59
101 rdf:type schema:Person
102 sg:person.01356675436.56 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
103 schema:familyName Liang
104 schema:givenName Yanchun
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356675436.56
106 rdf:type schema:Person
107 sg:person.014411317765.11 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
108 schema:familyName Yang
109 schema:givenName Chen
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411317765.11
111 rdf:type schema:Person
112 sg:person.015022132271.13 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
113 schema:familyName Marchese
114 schema:givenName Maurizio
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022132271.13
116 rdf:type schema:Person
117 sg:person.015634767054.88 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
118 schema:familyName Wang
119 schema:givenName Xu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634767054.88
121 rdf:type schema:Person
122 sg:pub.10.1007/s00521-016-2401-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054517546
123 https://doi.org/10.1007/s00521-016-2401-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s12652-017-0660-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100859978
126 https://doi.org/10.1007/s12652-017-0660-8
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s12652-017-0671-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100315887
129 https://doi.org/10.1007/s12652-017-0671-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature03459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041161194
132 https://doi.org/10.1038/nature03459
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature21056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074217286
135 https://doi.org/10.1038/nature21056
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.knosys.2013.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025111269
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.0307752101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026144033
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/34.1000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155588
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/ijcnn.2009.5178973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094488547
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tkde.2010.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662141
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tnn.2011.2108315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717844
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tnnls.2012.2186825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718069
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tpami.2011.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744061
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tpami.2013.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744581
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpami.2014.2299812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744623
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpami.2017.2695539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084948479
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014940366
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1111/j.1460-2466.2000.tb02843.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013039097
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1127647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607132
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.1136800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347292
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1281192.1281268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040178460
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/775047.775061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016816323
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pone.0005372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003201349
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
176 schema:name Department of Engineering and Computer Science, University of Trento, 9I-38123, Povo, Italy
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.241054.6 schema:alternateName University of Arkansas for Medical Sciences
179 schema:name MidSouth Bioinformatics Center and Joint Bioinformatics, University of Arkansas at Little Rock and University of Arkansas Medical Sciences, 72204, Little Rock, AR, USA
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
182 schema:name College of Earth Sciences, Jilin University, 130061, Changchun, China
183 Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry, College of Computer Science and Technology, Jilin University, 130012, Changchun, China
184 Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, 519041, Zhuhai, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...