OSA-weigher: an automated computational framework for identifying obstructive sleep apnea based on event phase segmentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Fan Liu, Xingshe Zhou, Zhu Wang, Hongbo Ni, Tianben Wang

ABSTRACT

Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders, which causes various diseases and reduces life quality severely. In this paper, we propose OSA-Weigher, an automated computational framework that can improve the performance of identifying OSA events. Particularly, the key idea of OSA-Weigher is to subdivide each potential event segment (PES, i.e., a data segment that may or may not contain an OSA event) and to explore more information of respiratory pattern, so as to improve OSA events identification performance. Concretely, we utilize a micro-movement sensitive mattress (MSM) to get ballistocardiography (BCG) signal during sleep, and locate PESs by identifying the occurrence of arousals (i.e., a mechanism that makes patients recover from being apneic). Afterwards, we divide each PES into three phases (i.e., Apnea Phase, Respiratory Effort Phase and Arousal Phase) using a sliding window-based adaptive method. Based on these phases, we further extract and select efficient fine-grained features to characterize respiratory pattern from multiple aspects. Finally, these PESs are classified into OSA events or non-OSA events by employing an optimized ensemble classifier. Experimental results based on a real BCG dataset of 116 subjects show that OSA-Weigher outperforms the baseline method by 12.7% in terms of Precision, 14.8% in terms of Recall and 0.152 in terms of AUC (area under ROC curve). More... »

PAGES

1937-1954

References to SciGraph publications

  • 2015-06-25. Obstructive sleep apnoea syndrome in NATURE REVIEWS DISEASE PRIMERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-0787-2

    DOI

    http://dx.doi.org/10.1007/s12652-018-0787-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103191824


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Fan", 
            "id": "sg:person.012446471523.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446471523.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Xingshe", 
            "id": "sg:person.0702343315.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702343315.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhu", 
            "id": "sg:person.07557750431.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557750431.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ni", 
            "givenName": "Hongbo", 
            "id": "sg:person.0764037722.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764037722.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Computer Science, Northwestern Polytechnical University, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Tianben", 
            "id": "sg:person.07601007633.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601007633.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1183/09031936.02.00262002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005268519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(02)09464-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005948329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kws342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013198569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2016.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015545459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2015.2512276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016607469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1620/tjem.223.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018925011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2461381.2461405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024224757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1164/rccm.200307-1023oc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026278959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2742647.2742674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037870898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrdp.2015.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038057216", 
              "https://doi.org/10.1038/nrdp.2015.15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2769493.2769541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044856057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclinane.2015.12.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045721218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2869.1998.00092.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046841130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2869.1998.00092.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046841130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0967-3334/30/10/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059123384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0967-3334/30/10/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059123384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jbhi.2013.2267096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061276673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jbhi.2014.2307913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061276845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tase.2014.2345667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061515445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbcas.2014.2314301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061523025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2003.812203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2003.817636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2006.889772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2007.910679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061527210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2015.2422378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2010.2087386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2012.2185809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2012.2188299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2009.2033062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5665/sleep.3424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073065926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/22.5.662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074555971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/embc.2015.7319403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079205958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/20.8.654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083166206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0175351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085071826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/eait.2012.6407868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093176126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/indcon.2012.6420761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093184498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tic-sth.2009.5444394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093621960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icbbe.2011.5780285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095171494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icbbe.2011.5780285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095171494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bibe.2016.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095228958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bhi.2016.7455867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095449498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcom.2018.1700144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104047575"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders, which causes various diseases and reduces life quality severely. In this paper, we propose OSA-Weigher, an automated computational framework that can improve the performance of identifying OSA events. Particularly, the key idea of OSA-Weigher is to subdivide each potential event segment (PES, i.e., a data segment that may or may not contain an OSA event) and to explore more information of respiratory pattern, so as to improve OSA events identification performance. Concretely, we utilize a micro-movement sensitive mattress (MSM) to get ballistocardiography (BCG) signal during sleep, and locate PESs by identifying the occurrence of arousals (i.e., a mechanism that makes patients recover from being apneic). Afterwards, we divide each PES into three phases (i.e., Apnea Phase, Respiratory Effort Phase and Arousal Phase) using a sliding window-based adaptive method. Based on these phases, we further extract and select efficient fine-grained features to characterize respiratory pattern from multiple aspects. Finally, these PESs are classified into OSA events or non-OSA events by employing an optimized ensemble classifier. Experimental results based on a real BCG dataset of 116 subjects show that OSA-Weigher outperforms the baseline method by 12.7% in terms of Precision, 14.8% in terms of Recall and 0.152 in terms of AUC (area under ROC curve).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-0787-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "OSA-weigher: an automated computational framework for identifying obstructive sleep apnea based on event phase segmentation", 
        "pagination": "1937-1954", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-0787-2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3170699ae71deda0151bb7e83b3c0299e41903f7a2a343cbfc9f7a1d5549340f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103191824"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-0787-2", 
          "https://app.dimensions.ai/details/publication/pub.1103191824"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91459_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-0787-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0787-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0787-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0787-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0787-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-0787-2 schema:about anzsrc-for:11
    2 anzsrc-for:1102
    3 schema:author N9713708d252d49dca11c0f20858c275a
    4 schema:citation sg:pub.10.1038/nrdp.2015.15
    5 https://doi.org/10.1016/j.bspc.2016.05.009
    6 https://doi.org/10.1016/j.jclinane.2015.12.020
    7 https://doi.org/10.1016/s0140-6736(02)09464-3
    8 https://doi.org/10.1046/j.1365-2869.1998.00092.x
    9 https://doi.org/10.1088/0967-3334/30/10/005
    10 https://doi.org/10.1093/aje/kws342
    11 https://doi.org/10.1093/sleep/20.8.654
    12 https://doi.org/10.1093/sleep/22.5.662
    13 https://doi.org/10.1109/bhi.2016.7455867
    14 https://doi.org/10.1109/bibe.2016.45
    15 https://doi.org/10.1109/eait.2012.6407868
    16 https://doi.org/10.1109/embc.2015.7319403
    17 https://doi.org/10.1109/icbbe.2011.5780285
    18 https://doi.org/10.1109/indcon.2012.6420761
    19 https://doi.org/10.1109/jbhi.2013.2267096
    20 https://doi.org/10.1109/jbhi.2014.2307913
    21 https://doi.org/10.1109/mcom.2018.1700144
    22 https://doi.org/10.1109/tase.2014.2345667
    23 https://doi.org/10.1109/tbcas.2014.2314301
    24 https://doi.org/10.1109/tbme.2003.812203
    25 https://doi.org/10.1109/tbme.2003.817636
    26 https://doi.org/10.1109/tbme.2006.889772
    27 https://doi.org/10.1109/tbme.2007.910679
    28 https://doi.org/10.1109/tbme.2015.2422378
    29 https://doi.org/10.1109/tbme.2015.2512276
    30 https://doi.org/10.1109/tic-sth.2009.5444394
    31 https://doi.org/10.1109/titb.2010.2087386
    32 https://doi.org/10.1109/titb.2012.2185809
    33 https://doi.org/10.1109/titb.2012.2188299
    34 https://doi.org/10.1109/tnsre.2009.2033062
    35 https://doi.org/10.1145/2461381.2461405
    36 https://doi.org/10.1145/2742647.2742674
    37 https://doi.org/10.1145/2769493.2769541
    38 https://doi.org/10.1164/rccm.200307-1023oc
    39 https://doi.org/10.1183/09031936.02.00262002
    40 https://doi.org/10.1371/journal.pone.0175351
    41 https://doi.org/10.1620/tjem.223.285
    42 https://doi.org/10.5665/sleep.3424
    43 schema:datePublished 2019-05
    44 schema:datePublishedReg 2019-05-01
    45 schema:description Obstructive sleep apnea (OSA) is one of the most common sleep-related breathing disorders, which causes various diseases and reduces life quality severely. In this paper, we propose OSA-Weigher, an automated computational framework that can improve the performance of identifying OSA events. Particularly, the key idea of OSA-Weigher is to subdivide each potential event segment (PES, i.e., a data segment that may or may not contain an OSA event) and to explore more information of respiratory pattern, so as to improve OSA events identification performance. Concretely, we utilize a micro-movement sensitive mattress (MSM) to get ballistocardiography (BCG) signal during sleep, and locate PESs by identifying the occurrence of arousals (i.e., a mechanism that makes patients recover from being apneic). Afterwards, we divide each PES into three phases (i.e., Apnea Phase, Respiratory Effort Phase and Arousal Phase) using a sliding window-based adaptive method. Based on these phases, we further extract and select efficient fine-grained features to characterize respiratory pattern from multiple aspects. Finally, these PESs are classified into OSA events or non-OSA events by employing an optimized ensemble classifier. Experimental results based on a real BCG dataset of 116 subjects show that OSA-Weigher outperforms the baseline method by 12.7% in terms of Precision, 14.8% in terms of Recall and 0.152 in terms of AUC (area under ROC curve).
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N9052bd3de17c4cb4b134bb5b7f696f54
    50 N91d6b1801cc440c4b0a87859cbf37e9f
    51 sg:journal.1043999
    52 schema:name OSA-weigher: an automated computational framework for identifying obstructive sleep apnea based on event phase segmentation
    53 schema:pagination 1937-1954
    54 schema:productId N178e7fd5b57f41fdb29175d9f45ae455
    55 N2c7fe648829c45e9881f4791bfa7d91d
    56 N752f02a44b964230997cc34a07173525
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103191824
    58 https://doi.org/10.1007/s12652-018-0787-2
    59 schema:sdDatePublished 2019-04-15T09:03
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N82b5e014a62b4d769275dfb6e7ce2231
    62 schema:url https://link.springer.com/10.1007%2Fs12652-018-0787-2
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N178e7fd5b57f41fdb29175d9f45ae455 schema:name dimensions_id
    67 schema:value pub.1103191824
    68 rdf:type schema:PropertyValue
    69 N2c7fe648829c45e9881f4791bfa7d91d schema:name readcube_id
    70 schema:value 3170699ae71deda0151bb7e83b3c0299e41903f7a2a343cbfc9f7a1d5549340f
    71 rdf:type schema:PropertyValue
    72 N44caa9036ba24cda9f9bdf30cd55f102 rdf:first sg:person.0702343315.73
    73 rdf:rest N97652a0c7ede4e968e07a30c36bb0c50
    74 N752f02a44b964230997cc34a07173525 schema:name doi
    75 schema:value 10.1007/s12652-018-0787-2
    76 rdf:type schema:PropertyValue
    77 N82b5e014a62b4d769275dfb6e7ce2231 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N87c5aaeb4104417f8d1ca80def38d376 rdf:first sg:person.0764037722.23
    80 rdf:rest Nd2088e71de7349e3b0ca91fce32700d6
    81 N9052bd3de17c4cb4b134bb5b7f696f54 schema:issueNumber 5
    82 rdf:type schema:PublicationIssue
    83 N91d6b1801cc440c4b0a87859cbf37e9f schema:volumeNumber 10
    84 rdf:type schema:PublicationVolume
    85 N9713708d252d49dca11c0f20858c275a rdf:first sg:person.012446471523.10
    86 rdf:rest N44caa9036ba24cda9f9bdf30cd55f102
    87 N97652a0c7ede4e968e07a30c36bb0c50 rdf:first sg:person.07557750431.31
    88 rdf:rest N87c5aaeb4104417f8d1ca80def38d376
    89 Nd2088e71de7349e3b0ca91fce32700d6 rdf:first sg:person.07601007633.79
    90 rdf:rest rdf:nil
    91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Medical and Health Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Cardiorespiratory Medicine and Haematology
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1043999 schema:issn 1868-5137
    98 1868-5145
    99 schema:name Journal of Ambient Intelligence and Humanized Computing
    100 rdf:type schema:Periodical
    101 sg:person.012446471523.10 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    102 schema:familyName Liu
    103 schema:givenName Fan
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446471523.10
    105 rdf:type schema:Person
    106 sg:person.0702343315.73 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    107 schema:familyName Zhou
    108 schema:givenName Xingshe
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702343315.73
    110 rdf:type schema:Person
    111 sg:person.07557750431.31 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    112 schema:familyName Wang
    113 schema:givenName Zhu
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557750431.31
    115 rdf:type schema:Person
    116 sg:person.07601007633.79 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    117 schema:familyName Wang
    118 schema:givenName Tianben
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601007633.79
    120 rdf:type schema:Person
    121 sg:person.0764037722.23 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    122 schema:familyName Ni
    123 schema:givenName Hongbo
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764037722.23
    125 rdf:type schema:Person
    126 sg:pub.10.1038/nrdp.2015.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038057216
    127 https://doi.org/10.1038/nrdp.2015.15
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.bspc.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015545459
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.jclinane.2015.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045721218
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0140-6736(02)09464-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005948329
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1046/j.1365-2869.1998.00092.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046841130
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1088/0967-3334/30/10/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059123384
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1093/aje/kws342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013198569
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1093/sleep/20.8.654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083166206
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1093/sleep/22.5.662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074555971
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/bhi.2016.7455867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095449498
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/bibe.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095228958
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/eait.2012.6407868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093176126
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/embc.2015.7319403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079205958
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/icbbe.2011.5780285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095171494
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/indcon.2012.6420761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093184498
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/jbhi.2013.2267096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276673
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/jbhi.2014.2307913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276845
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/mcom.2018.1700144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104047575
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tase.2014.2345667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061515445
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tbcas.2014.2314301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523025
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tbme.2003.812203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525913
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tbme.2003.817636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525963
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/tbme.2006.889772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526924
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/tbme.2007.910679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527210
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/tbme.2015.2422378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529852
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/tbme.2015.2512276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016607469
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/tic-sth.2009.5444394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093621960
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/titb.2010.2087386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656954
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/titb.2012.2185809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657103
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/titb.2012.2188299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657115
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/tnsre.2009.2033062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740418
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/2461381.2461405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024224757
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1145/2742647.2742674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037870898
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1145/2769493.2769541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044856057
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1164/rccm.200307-1023oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1026278959
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1183/09031936.02.00262002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005268519
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1371/journal.pone.0175351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085071826
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1620/tjem.223.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018925011
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.5665/sleep.3424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073065926
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
    206 schema:name School of Computer Science, Northwestern Polytechnical University, Xi’an, China
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...