Efficient flow detection and scheduling for SDN-based big data centers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Heteng Zhang, Feilong Tang, Leonard Barolli

ABSTRACT

In Software defined networking (SDN) based datacenters, flow-level management seriously limits system scalability due to large amount of control messages between data and control planes; and mice flows often are blocked by elephant flows because of the indiscriminate flow scheduling. To improve management efficiency and system performance, it is prerequisite to schedule elephant and mice flows respectively. Unfortunately, existing flow scheduling approaches in SDN consider only elephant flows. In this paper, we firstly propose an efficient flow detection mechanism. Then, we propose a novel DIFFERENtiated sChEduling (DIFFERENCE) approach that dynamically sets up paths for elephant and mice flows separately, based on current link workload. Our DIFFERENCE schedules mice flows with proactively installed weighted multipath routing algorithm and adjusts path weight according to link utilization. Instead, we propose a blocking island based path setup algorithm for elephant flows, which find the least congested path with shorter searching space. To balance traffic in a SDN networks, we design an algorithm to dynamically reschedule data flows in terms of current link utilization ratio. Experiment results on real public datacenter traces demonstrate that our approach outperforms related proposals in terms of various system performance. More... »

PAGES

1915-1926

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12652-018-0783-6

DOI

http://dx.doi.org/10.1007/s12652-018-0783-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103660506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "School of Software, Shanghai Jiao Tong University, 200240, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Heteng", 
        "id": "sg:person.012410626150.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012410626150.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Feilong", 
        "id": "sg:person.016610154341.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610154341.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuoka Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.418051.9", 
          "name": [
            "Faculty of Information Engineering, Fukuoka Institute of Technology, 811-0295, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barolli", 
        "givenName": "Leonard", 
        "id": "sg:person.07723156317.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723156317.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1879141.1879175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001299217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2043164.2018466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002581335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2018436.2018477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005925830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1592568.1592604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009109101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2413176.2413206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017195613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2342356.2342389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023351336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2534169.2491710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028534527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1355734.1355746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034503230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2535372.2535384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039012447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1644893.1644918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041922290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/859716.859719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051408958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1028788.1028803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051505981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2543722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/thms.2015.2446953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2016.2610408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2016.2620980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061691774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2016.2633527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061830698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1402946.1402967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063155198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1594977.1592576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063156642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2829988.2790009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063165832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijguc.2016.077493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067459314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijssc.2016.076564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067494613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijssc.2016.077971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067494621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2017.2739746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091268861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijguc.2017.087813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092563812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2011.5934956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093421299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infocom.2014.6848190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094051643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/glocom.2014.7037145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094252399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnp.2006.320202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094644101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.2014.6883793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094677917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2017.2784815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100061403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "In Software defined networking (SDN) based datacenters, flow-level management seriously limits system scalability due to large amount of control messages between data and control planes; and mice flows often are blocked by elephant flows because of the indiscriminate flow scheduling. To improve management efficiency and system performance, it is prerequisite to schedule elephant and mice flows respectively. Unfortunately, existing flow scheduling approaches in SDN consider only elephant flows. In this paper, we firstly propose an efficient flow detection mechanism. Then, we propose a novel DIFFERENtiated sChEduling (DIFFERENCE) approach that dynamically sets up paths for elephant and mice flows separately, based on current link workload. Our DIFFERENCE schedules mice flows with proactively installed weighted multipath routing algorithm and adjusts path weight according to link utilization. Instead, we propose a blocking island based path setup algorithm for elephant flows, which find the least congested path with shorter searching space. To balance traffic in a SDN networks, we design an algorithm to dynamically reschedule data flows in terms of current link utilization ratio. Experiment results on real public datacenter traces demonstrate that our approach outperforms related proposals in terms of various system performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12652-018-0783-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043999", 
        "issn": [
          "1868-5137", 
          "1868-5145"
        ], 
        "name": "Journal of Ambient Intelligence and Humanized Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Efficient flow detection and scheduling for SDN-based big data centers", 
    "pagination": "1915-1926", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5634969a74792c72b75f9981f4653c5e2c350181470d8d2ccbdf12922040774b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12652-018-0783-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103660506"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12652-018-0783-6", 
      "https://app.dimensions.ai/details/publication/pub.1103660506"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12652-018-0783-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0783-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0783-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0783-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0783-6'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12652-018-0783-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N7fd724335ccc4203968c2fda9f1aa4f7
4 schema:citation https://doi.org/10.1109/glocom.2014.7037145
5 https://doi.org/10.1109/icc.2014.6883793
6 https://doi.org/10.1109/icnp.2006.320202
7 https://doi.org/10.1109/infcom.2011.5934956
8 https://doi.org/10.1109/infocom.2014.6848190
9 https://doi.org/10.1109/tcc.2016.2543722
10 https://doi.org/10.1109/thms.2015.2446953
11 https://doi.org/10.1109/tii.2016.2610408
12 https://doi.org/10.1109/tmc.2016.2620980
13 https://doi.org/10.1109/tvt.2017.2739746
14 https://doi.org/10.1109/twc.2016.2633527
15 https://doi.org/10.1109/twc.2017.2784815
16 https://doi.org/10.1145/1028788.1028803
17 https://doi.org/10.1145/1355734.1355746
18 https://doi.org/10.1145/1402946.1402967
19 https://doi.org/10.1145/1592568.1592604
20 https://doi.org/10.1145/1594977.1592576
21 https://doi.org/10.1145/1644893.1644918
22 https://doi.org/10.1145/1879141.1879175
23 https://doi.org/10.1145/2018436.2018477
24 https://doi.org/10.1145/2043164.2018466
25 https://doi.org/10.1145/2342356.2342389
26 https://doi.org/10.1145/2413176.2413206
27 https://doi.org/10.1145/2534169.2491710
28 https://doi.org/10.1145/2535372.2535384
29 https://doi.org/10.1145/2829988.2790009
30 https://doi.org/10.1145/859716.859719
31 https://doi.org/10.1504/ijguc.2016.077493
32 https://doi.org/10.1504/ijguc.2017.087813
33 https://doi.org/10.1504/ijssc.2016.076564
34 https://doi.org/10.1504/ijssc.2016.077971
35 schema:datePublished 2019-05
36 schema:datePublishedReg 2019-05-01
37 schema:description In Software defined networking (SDN) based datacenters, flow-level management seriously limits system scalability due to large amount of control messages between data and control planes; and mice flows often are blocked by elephant flows because of the indiscriminate flow scheduling. To improve management efficiency and system performance, it is prerequisite to schedule elephant and mice flows respectively. Unfortunately, existing flow scheduling approaches in SDN consider only elephant flows. In this paper, we firstly propose an efficient flow detection mechanism. Then, we propose a novel DIFFERENtiated sChEduling (DIFFERENCE) approach that dynamically sets up paths for elephant and mice flows separately, based on current link workload. Our DIFFERENCE schedules mice flows with proactively installed weighted multipath routing algorithm and adjusts path weight according to link utilization. Instead, we propose a blocking island based path setup algorithm for elephant flows, which find the least congested path with shorter searching space. To balance traffic in a SDN networks, we design an algorithm to dynamically reschedule data flows in terms of current link utilization ratio. Experiment results on real public datacenter traces demonstrate that our approach outperforms related proposals in terms of various system performance.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N69a99ff7aaf74b6a8c7848b65eb60a4a
42 N7dd82da2361a4132a7c7ffbabad342c7
43 sg:journal.1043999
44 schema:name Efficient flow detection and scheduling for SDN-based big data centers
45 schema:pagination 1915-1926
46 schema:productId N0862f380badd4a21ac40c179d9604103
47 N50771339dd604b37a1a8f0d75f1cff0b
48 Nf1a388a54f744704a0f626b4feaf6ba8
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103660506
50 https://doi.org/10.1007/s12652-018-0783-6
51 schema:sdDatePublished 2019-04-11T13:49
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N73b08f1e6285498aa2090916de110e42
54 schema:url https://link.springer.com/10.1007%2Fs12652-018-0783-6
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0862f380badd4a21ac40c179d9604103 schema:name doi
59 schema:value 10.1007/s12652-018-0783-6
60 rdf:type schema:PropertyValue
61 N50771339dd604b37a1a8f0d75f1cff0b schema:name readcube_id
62 schema:value 5634969a74792c72b75f9981f4653c5e2c350181470d8d2ccbdf12922040774b
63 rdf:type schema:PropertyValue
64 N58953e336af14d1792348fd9fed17f9c rdf:first sg:person.07723156317.07
65 rdf:rest rdf:nil
66 N69a99ff7aaf74b6a8c7848b65eb60a4a schema:volumeNumber 10
67 rdf:type schema:PublicationVolume
68 N73b08f1e6285498aa2090916de110e42 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N794923191f95486784a0987856494525 rdf:first sg:person.016610154341.22
71 rdf:rest N58953e336af14d1792348fd9fed17f9c
72 N7dd82da2361a4132a7c7ffbabad342c7 schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 N7fd724335ccc4203968c2fda9f1aa4f7 rdf:first sg:person.012410626150.85
75 rdf:rest N794923191f95486784a0987856494525
76 Nf1a388a54f744704a0f626b4feaf6ba8 schema:name dimensions_id
77 schema:value pub.1103660506
78 rdf:type schema:PropertyValue
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information Systems
84 rdf:type schema:DefinedTerm
85 sg:journal.1043999 schema:issn 1868-5137
86 1868-5145
87 schema:name Journal of Ambient Intelligence and Humanized Computing
88 rdf:type schema:Periodical
89 sg:person.012410626150.85 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
90 schema:familyName Zhang
91 schema:givenName Heteng
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012410626150.85
93 rdf:type schema:Person
94 sg:person.016610154341.22 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
95 schema:familyName Tang
96 schema:givenName Feilong
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610154341.22
98 rdf:type schema:Person
99 sg:person.07723156317.07 schema:affiliation https://www.grid.ac/institutes/grid.418051.9
100 schema:familyName Barolli
101 schema:givenName Leonard
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723156317.07
103 rdf:type schema:Person
104 https://doi.org/10.1109/glocom.2014.7037145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094252399
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/icc.2014.6883793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094677917
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/icnp.2006.320202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644101
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/infcom.2011.5934956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093421299
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/infocom.2014.6848190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094051643
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tcc.2016.2543722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061542030
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/thms.2015.2446953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614975
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tii.2016.2610408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632964
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tmc.2016.2620980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061691774
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tvt.2017.2739746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091268861
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/twc.2016.2633527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061830698
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/twc.2017.2784815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100061403
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1028788.1028803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051505981
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/1355734.1355746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034503230
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/1402946.1402967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063155198
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/1592568.1592604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009109101
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/1594977.1592576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063156642
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/1644893.1644918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041922290
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1879141.1879175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001299217
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/2018436.2018477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005925830
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/2043164.2018466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002581335
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2342356.2342389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023351336
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/2413176.2413206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017195613
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/2534169.2491710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028534527
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/2535372.2535384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039012447
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/2829988.2790009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063165832
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/859716.859719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051408958
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1504/ijguc.2016.077493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067459314
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1504/ijguc.2017.087813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092563812
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1504/ijssc.2016.076564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067494613
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1504/ijssc.2016.077971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067494621
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
167 schema:name Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
168 School of Software, Shanghai Jiao Tong University, 200240, Shanghai, China
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.418051.9 schema:alternateName Fukuoka Institute of Technology
171 schema:name Faculty of Information Engineering, Fukuoka Institute of Technology, 811-0295, Fukuoka, Japan
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...