EAODV: detection and removal of multiple black hole attacks through sending forged packets in MANETs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Taher Delkesh, Mohammad Ali Jabraeil Jamali

ABSTRACT

Detecting and removing black hole attacks are considered to be one major routing security issue in mobile ad hoc networks (MANETs). Malicious nodes existing on the delivery route of packets change a secure route into an insecure route in these networks. Hence, rather than delivering them to the next node, the malicious nodes discard data packets. In this paper, a routing algorithm is proposed based on sending forged packets so as to enhance the accuracy of detecting and removing malicious nodes. According to the proposed method, malicious nodes in a network are detected through sending forged route request (RREQ) and route reply (RREP) routing packets which include the address of unreal destination node. Then, they are removed from routing tables of nodes via sending an RREP message. The method proposed in this paper was able to improve traffic load in the network, identify a short and secure route, detect a number of malicious nodes and optimize the criteria of packet deliver rate, throughput and routing overhead. Simulations results indicated that the percentage of the delivered data packets by the proposed algorithm is higher than that of Intrusion Detection System (IDS) algorithm. Furthermore, thanks to the accuracy improvement in detecting black hole, lack of many conditions for RREQ and RREP and quick routing detection process, the delay in the proposed method was lower than other methods. The above-mentioned factors led to the optimization of throughput. More... »

PAGES

1897-1914

References to SciGraph publications

  • 2014. Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013 in NONE
  • 2015. Innovative Security Solutions for Information Technology and Communications, 8th International Conference, SECITC 2015, Bucharest, Romania, June 11-12, 2015. Revised Selected Papers in NONE
  • 2014-08. An overview of intelligent selection and prediction method in heterogeneous wireless networks in JOURNAL OF CENTRAL SOUTH UNIVERSITY
  • 2016. Emerging Research in Computing, Information, Communication and Applications, ERCICA 2015, Volume 3 in NONE
  • 2019-04. Performance analysis of black-hole attack mitigation protocols under gray-hole attacks in MANET in WIRELESS NETWORKS
  • 2017. Europe and MENA Cooperation Advances in Information and Communication Technologies in NONE
  • 2016-08. Modelling and verifying the AODV routing protocol in DISTRIBUTED COMPUTING
  • 2015-10. Crossover-based artificial bee colony algorithm for constrained optimization problems in NEURAL COMPUTING AND APPLICATIONS
  • 2014. Detection and Defense Technology of Blackhole Attacks in Wireless Sensor Network in ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING
  • 2011-12. A survey of black hole attacks in wireless mobile ad hoc networks in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2016-07. A modified algorithm to improve security and performance of AODV protocol against black hole attack in WIRELESS NETWORKS
  • 2014-03. Trust Based DSR Routing Protocol for Mitigating Cooperative Black Hole Attacks in Ad Hoc Networks in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • 2013-04. Protection of MANETs from a range of attacks using an intrusion detection and prevention system in TELECOMMUNICATION SYSTEMS
  • 2017. Computational Intelligence in Information Systems in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-0782-7

    DOI

    http://dx.doi.org/10.1007/s12652-018-0782-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101847059


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Islamic Azad University", 
              "id": "https://www.grid.ac/institutes/grid.464595.f", 
              "name": [
                "Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Delkesh", 
            "givenName": "Taher", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Islamic Azad University", 
              "id": "https://www.grid.ac/institutes/grid.464595.f", 
              "name": [
                "Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jabraeil Jamali", 
            "givenName": "Mohammad Ali", 
            "id": "sg:person.016503512103.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503512103.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.adhoc.2015.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001330126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11771-014-2286-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008618706", 
              "https://doi.org/10.1007/s11771-014-2286-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.adhoc.2013.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011016677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.adhoc.2016.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013790129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comnet.2014.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014707112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcss.2013.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.adhoc.2007.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020919556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2192-1962-1-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021816513", 
              "https://doi.org/10.1186/2192-1962-1-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2014.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023118170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/345910.345955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024073116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2016.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025070884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-27179-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027582107", 
              "https://doi.org/10.1007/978-3-319-27179-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-27179-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027582107", 
              "https://doi.org/10.1007/978-3-319-27179-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-013-0764-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027777159", 
              "https://doi.org/10.1007/s13369-013-0764-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-1826-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031567785", 
              "https://doi.org/10.1007/s00521-015-1826-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02931-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033419899", 
              "https://doi.org/10.1007/978-3-319-02931-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02931-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033419899", 
              "https://doi.org/10.1007/978-3-319-02931-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-0287-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036581695", 
              "https://doi.org/10.1007/978-981-10-0287-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-0287-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036581695", 
              "https://doi.org/10.1007/978-981-10-0287-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-0287-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036581695", 
              "https://doi.org/10.1007/978-981-10-0287-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comnet.2015.05.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038795636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2015.03.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039270518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11235-011-9484-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041409962", 
              "https://doi.org/10.1007/s11235-011-9484-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11235-011-9484-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041409962", 
              "https://doi.org/10.1007/s11235-011-9484-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2010.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044814070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2014.09.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045400266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-11194-0_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045923965", 
              "https://doi.org/10.1007/978-3-319-11194-0_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2013.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047510755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2012.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049254708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00446-015-0262-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049851660", 
              "https://doi.org/10.1007/s00446-015-0262-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11276-015-1032-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050427779", 
              "https://doi.org/10.1007/s11276-015-1032-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcom.2002.1039859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061393448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2009.071036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061826540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijaip.2013.054681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067431218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2498/cit.2006.03.05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070861297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jnw.3.5.13-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072450152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46568-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084847706", 
              "https://doi.org/10.1007/978-3-319-46568-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-48517-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084909368", 
              "https://doi.org/10.1007/978-3-319-48517-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wispnet.2016.7566500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094800296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11276-017-1639-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099698761", 
              "https://doi.org/10.1007/s11276-017-1639-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11276-017-1639-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099698761", 
              "https://doi.org/10.1007/s11276-017-1639-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11276-017-1639-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099698761", 
              "https://doi.org/10.1007/s11276-017-1639-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Detecting and removing black hole attacks are considered to be one major routing security issue in mobile ad hoc networks (MANETs). Malicious nodes existing on the delivery route of packets change a secure route into an insecure route in these networks. Hence, rather than delivering them to the next node, the malicious nodes discard data packets. In this paper, a routing algorithm is proposed based on sending forged packets so as to enhance the accuracy of detecting and removing malicious nodes. According to the proposed method, malicious nodes in a network are detected through sending forged route request (RREQ) and route reply (RREP) routing packets which include the address of unreal destination node. Then, they are removed from routing tables of nodes via sending an RREP message. The method proposed in this paper was able to improve traffic load in the network, identify a short and secure route, detect a number of malicious nodes and optimize the criteria of packet deliver rate, throughput and routing overhead. Simulations results indicated that the percentage of the delivered data packets by the proposed algorithm is higher than that of Intrusion Detection System (IDS) algorithm. Furthermore, thanks to the accuracy improvement in detecting black hole, lack of many conditions for RREQ and RREP and quick routing detection process, the delay in the proposed method was lower than other methods. The above-mentioned factors led to the optimization of throughput.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-0782-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "EAODV: detection and removal of multiple black hole attacks through sending forged packets in MANETs", 
        "pagination": "1897-1914", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cb8b40596e7194b41427da38125093691827f74341f4e61d4eff78171d1a6da3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-0782-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101847059"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-0782-7", 
          "https://app.dimensions.ai/details/publication/pub.1101847059"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-0782-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0782-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0782-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0782-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0782-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-0782-7 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author Ne36bec18d1c642a09ed03bbdcb2683ea
    4 schema:citation sg:pub.10.1007/978-3-319-02931-3
    5 sg:pub.10.1007/978-3-319-11194-0_53
    6 sg:pub.10.1007/978-3-319-27179-8
    7 sg:pub.10.1007/978-3-319-46568-5
    8 sg:pub.10.1007/978-3-319-48517-1
    9 sg:pub.10.1007/978-981-10-0287-8
    10 sg:pub.10.1007/s00446-015-0262-7
    11 sg:pub.10.1007/s00521-015-1826-y
    12 sg:pub.10.1007/s11235-011-9484-6
    13 sg:pub.10.1007/s11276-015-1032-y
    14 sg:pub.10.1007/s11276-017-1639-2
    15 sg:pub.10.1007/s11771-014-2286-8
    16 sg:pub.10.1007/s13369-013-0764-1
    17 sg:pub.10.1186/2192-1962-1-4
    18 https://doi.org/10.1016/j.adhoc.2007.05.001
    19 https://doi.org/10.1016/j.adhoc.2013.08.017
    20 https://doi.org/10.1016/j.adhoc.2015.01.006
    21 https://doi.org/10.1016/j.adhoc.2016.05.009
    22 https://doi.org/10.1016/j.comcom.2010.08.007
    23 https://doi.org/10.1016/j.comcom.2014.06.003
    24 https://doi.org/10.1016/j.comnet.2014.07.016
    25 https://doi.org/10.1016/j.comnet.2015.05.012
    26 https://doi.org/10.1016/j.compeleceng.2013.06.001
    27 https://doi.org/10.1016/j.compeleceng.2015.03.023
    28 https://doi.org/10.1016/j.ins.2014.09.039
    29 https://doi.org/10.1016/j.jcss.2013.06.011
    30 https://doi.org/10.1016/j.jnca.2012.01.019
    31 https://doi.org/10.1016/j.jnca.2016.05.013
    32 https://doi.org/10.1109/mcom.2002.1039859
    33 https://doi.org/10.1109/twc.2009.071036
    34 https://doi.org/10.1109/wispnet.2016.7566500
    35 https://doi.org/10.1145/345910.345955
    36 https://doi.org/10.1504/ijaip.2013.054681
    37 https://doi.org/10.2498/cit.2006.03.05
    38 https://doi.org/10.4304/jnw.3.5.13-20
    39 schema:datePublished 2019-05
    40 schema:datePublishedReg 2019-05-01
    41 schema:description Detecting and removing black hole attacks are considered to be one major routing security issue in mobile ad hoc networks (MANETs). Malicious nodes existing on the delivery route of packets change a secure route into an insecure route in these networks. Hence, rather than delivering them to the next node, the malicious nodes discard data packets. In this paper, a routing algorithm is proposed based on sending forged packets so as to enhance the accuracy of detecting and removing malicious nodes. According to the proposed method, malicious nodes in a network are detected through sending forged route request (RREQ) and route reply (RREP) routing packets which include the address of unreal destination node. Then, they are removed from routing tables of nodes via sending an RREP message. The method proposed in this paper was able to improve traffic load in the network, identify a short and secure route, detect a number of malicious nodes and optimize the criteria of packet deliver rate, throughput and routing overhead. Simulations results indicated that the percentage of the delivered data packets by the proposed algorithm is higher than that of Intrusion Detection System (IDS) algorithm. Furthermore, thanks to the accuracy improvement in detecting black hole, lack of many conditions for RREQ and RREP and quick routing detection process, the delay in the proposed method was lower than other methods. The above-mentioned factors led to the optimization of throughput.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N7ce65421a7e8403a8724bb5daee39a90
    46 N9b879efd121e4fa39a1a47d7190e2b01
    47 sg:journal.1043999
    48 schema:name EAODV: detection and removal of multiple black hole attacks through sending forged packets in MANETs
    49 schema:pagination 1897-1914
    50 schema:productId N2103dff5d6934c4690afe796057786fc
    51 N266976ac5c7d4283a7dc33bd31028d38
    52 N62b5c095327848ad9ab59fe21eee4c45
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101847059
    54 https://doi.org/10.1007/s12652-018-0782-7
    55 schema:sdDatePublished 2019-04-11T13:47
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nd95959389edb4a749e6f036f7bb4b6c3
    58 schema:url https://link.springer.com/10.1007%2Fs12652-018-0782-7
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N2103dff5d6934c4690afe796057786fc schema:name doi
    63 schema:value 10.1007/s12652-018-0782-7
    64 rdf:type schema:PropertyValue
    65 N266976ac5c7d4283a7dc33bd31028d38 schema:name readcube_id
    66 schema:value cb8b40596e7194b41427da38125093691827f74341f4e61d4eff78171d1a6da3
    67 rdf:type schema:PropertyValue
    68 N62b5c095327848ad9ab59fe21eee4c45 schema:name dimensions_id
    69 schema:value pub.1101847059
    70 rdf:type schema:PropertyValue
    71 N78565e645ffb4c7fadc03a011fd2f81d schema:affiliation https://www.grid.ac/institutes/grid.464595.f
    72 schema:familyName Delkesh
    73 schema:givenName Taher
    74 rdf:type schema:Person
    75 N7ce65421a7e8403a8724bb5daee39a90 schema:volumeNumber 10
    76 rdf:type schema:PublicationVolume
    77 N9b879efd121e4fa39a1a47d7190e2b01 schema:issueNumber 5
    78 rdf:type schema:PublicationIssue
    79 Nd95959389edb4a749e6f036f7bb4b6c3 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Ne36bec18d1c642a09ed03bbdcb2683ea rdf:first N78565e645ffb4c7fadc03a011fd2f81d
    82 rdf:rest Nea072aba86d64650bd2bac5e4ae0e638
    83 Nea072aba86d64650bd2bac5e4ae0e638 rdf:first sg:person.016503512103.63
    84 rdf:rest rdf:nil
    85 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Technology
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Communications Technologies
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1043999 schema:issn 1868-5137
    92 1868-5145
    93 schema:name Journal of Ambient Intelligence and Humanized Computing
    94 rdf:type schema:Periodical
    95 sg:person.016503512103.63 schema:affiliation https://www.grid.ac/institutes/grid.464595.f
    96 schema:familyName Jabraeil Jamali
    97 schema:givenName Mohammad Ali
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503512103.63
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-319-02931-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419899
    101 https://doi.org/10.1007/978-3-319-02931-3
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-319-11194-0_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045923965
    104 https://doi.org/10.1007/978-3-319-11194-0_53
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-3-319-27179-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027582107
    107 https://doi.org/10.1007/978-3-319-27179-8
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-319-46568-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084847706
    110 https://doi.org/10.1007/978-3-319-46568-5
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-319-48517-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084909368
    113 https://doi.org/10.1007/978-3-319-48517-1
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-981-10-0287-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036581695
    116 https://doi.org/10.1007/978-981-10-0287-8
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00446-015-0262-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049851660
    119 https://doi.org/10.1007/s00446-015-0262-7
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00521-015-1826-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031567785
    122 https://doi.org/10.1007/s00521-015-1826-y
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s11235-011-9484-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041409962
    125 https://doi.org/10.1007/s11235-011-9484-6
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11276-015-1032-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050427779
    128 https://doi.org/10.1007/s11276-015-1032-y
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s11276-017-1639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099698761
    131 https://doi.org/10.1007/s11276-017-1639-2
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s11771-014-2286-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008618706
    134 https://doi.org/10.1007/s11771-014-2286-8
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s13369-013-0764-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777159
    137 https://doi.org/10.1007/s13369-013-0764-1
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1186/2192-1962-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021816513
    140 https://doi.org/10.1186/2192-1962-1-4
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.adhoc.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020919556
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.adhoc.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011016677
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.adhoc.2015.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001330126
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.adhoc.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013790129
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.comcom.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044814070
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.comcom.2014.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023118170
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.comnet.2014.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014707112
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.comnet.2015.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038795636
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.compeleceng.2013.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047510755
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.compeleceng.2015.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270518
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.ins.2014.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045400266
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.jcss.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947149
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.jnca.2012.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049254708
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jnca.2016.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025070884
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/mcom.2002.1039859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061393448
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/twc.2009.071036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061826540
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/wispnet.2016.7566500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094800296
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1145/345910.345955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024073116
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1504/ijaip.2013.054681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067431218
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.2498/cit.2006.03.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070861297
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.4304/jnw.3.5.13-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072450152
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.464595.f schema:alternateName Islamic Azad University
    185 schema:name Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...