Trapdoor function based on the Ring-LWE and applications in communications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Chengli Zhang, Wenping Ma, Feifei Zhao

ABSTRACT

The “strong trapdoor function for lattice” has been constructed by Daniele Micciancio and Chris Peikert in EUROCRYPT 2012, which is simple, efficient, and easy to implement. In this paper, we present a new trapdoor function based on “ring learning with errors” problem (Ring-LWE) on lattice, and simultaneously the corresponding efficient inverse algorithm is given which involves two sub-algorithms: the trapdoor inverse algorithm and the iterative inverse algorithm. Our trapdoor function for lattice based on Ring-LWE is simultaneously more simple and efficient because of the ring structure. In addition to these advantages, our algorithm extends the parameters, and this can make our trapdoor function have a wider choice of applications. More... »

PAGES

1821-1827

References to SciGraph publications

  • 2012. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2012
  • 2006. Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices in THEORY OF CRYPTOGRAPHY
  • 2005. Efficient Identity-Based Encryption Without Random Oracles in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2005
  • 2004. Chosen-Ciphertext Security from Identity-Based Encryption in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004
  • 2011. Identity-Based Encryption in NONE
  • 2009. Efficient Public Key Encryption Based on Ideal Lattices in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2009
  • 2010. On Ideal Lattices and Learning with Errors over Rings in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2010
  • 2010. Fully Homomorphic Encryption over the Integers in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2010
  • 2013. Sieving for Shortest Vectors in Ideal Lattices in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2013
  • 2011. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages in ADVANCES IN CRYPTOLOGY – CRYPTO 2011
  • 2010. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes in PUBLIC KEY CRYPTOGRAPHY – PKC 2010
  • 2006. Practical Identity-Based Encryption Without Random Oracles in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2006
  • 2001-08-02. Identity-Based Encryption from the Weil Pairing in ADVANCES IN CRYPTOLOGY — CRYPTO 2001
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-018-0718-2

    DOI

    http://dx.doi.org/10.1007/s12652-018-0718-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101106102


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xidian University", 
              "id": "https://www.grid.ac/institutes/grid.440736.2", 
              "name": [
                "State Key Laboratory of Integrated Services Networks, Xidian University, 710071, Xi\u2019an, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chengli", 
            "id": "sg:person.011337061237.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337061237.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xidian University", 
              "id": "https://www.grid.ac/institutes/grid.440736.2", 
              "name": [
                "State Key Laboratory of Integrated Services Networks, Xidian University, 710071, Xi\u2019an, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Wenping", 
            "id": "sg:person.011613037021.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613037021.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xidian University", 
              "id": "https://www.grid.ac/institutes/grid.440736.2", 
              "name": [
                "State Key Laboratory of Integrated Services Networks, Xidian University, 710071, Xi\u2019an, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Feifei", 
            "id": "sg:person.013766773444.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013766773444.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-10366-7_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004771430", 
              "https://doi.org/10.1007/978-3-642-10366-7_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10366-7_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004771430", 
              "https://doi.org/10.1007/978-3-642-10366-7_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005543732", 
              "https://doi.org/10.1007/11681878_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11681878_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005543732", 
              "https://doi.org/10.1007/11681878_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1568318.1568324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013302643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014375289", 
              "https://doi.org/10.1007/3-540-44647-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014375289", 
              "https://doi.org/10.1007/3-540-44647-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605606", 
              "https://doi.org/10.1007/978-3-642-13190-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605606", 
              "https://doi.org/10.1007/978-3-642-13190-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305533", 
              "https://doi.org/10.1007/978-3-642-13190-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305533", 
              "https://doi.org/10.1007/978-3-642-13190-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-29011-4_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033795788", 
              "https://doi.org/10.1007/978-3-642-29011-4_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11761679_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036281518", 
              "https://doi.org/10.1007/11761679_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11761679_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036281518", 
              "https://doi.org/10.1007/11761679_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265457", 
              "https://doi.org/10.1007/978-3-540-24676-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11426639_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038491737", 
              "https://doi.org/10.1007/11426639_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11426639_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038491737", 
              "https://doi.org/10.1007/11426639_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38553-7_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039150645", 
              "https://doi.org/10.1007/978-3-642-38553-7_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13013-7_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039389499", 
              "https://doi.org/10.1007/978-3-642-13013-7_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1044722064", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-9383-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044722064", 
              "https://doi.org/10.1007/978-1-4419-9383-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-9383-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044722064", 
              "https://doi.org/10.1007/978-1-4419-9383-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22792-9_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049197805", 
              "https://doi.org/10.1007/978-3-642-22792-9_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22792-9_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049197805", 
              "https://doi.org/10.1007/978-3-642-22792-9_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1976.1055638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/080733954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062855106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/120868669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062869195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0097539705447360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062879617"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "The \u201cstrong trapdoor function for lattice\u201d has been constructed by Daniele Micciancio and Chris Peikert in EUROCRYPT 2012, which is simple, efficient, and easy to implement. In this paper, we present a new trapdoor function based on \u201cring learning with errors\u201d problem (Ring-LWE) on lattice, and simultaneously the corresponding efficient inverse algorithm is given which involves two sub-algorithms: the trapdoor inverse algorithm and the iterative inverse algorithm. Our trapdoor function for lattice based on Ring-LWE is simultaneously more simple and efficient because of the ring structure. In addition to these advantages, our algorithm extends the parameters, and this can make our trapdoor function have a wider choice of applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-018-0718-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Trapdoor function based on the Ring-LWE and applications in communications", 
        "pagination": "1821-1827", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c2ec3f2f56e83c956228b8ae17d23b2ba33806e0f154e2b33239e2a193532a3a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-018-0718-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101106102"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-018-0718-2", 
          "https://app.dimensions.ai/details/publication/pub.1101106102"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-018-0718-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0718-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0718-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0718-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-018-0718-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-018-0718-2 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Ncb2e5eb5709a45339a676cbb45dbf29f
    4 schema:citation sg:pub.10.1007/11426639_7
    5 sg:pub.10.1007/11681878_8
    6 sg:pub.10.1007/11761679_27
    7 sg:pub.10.1007/3-540-44647-8_13
    8 sg:pub.10.1007/978-1-4419-9383-0
    9 sg:pub.10.1007/978-3-540-24676-3_13
    10 sg:pub.10.1007/978-3-642-10366-7_36
    11 sg:pub.10.1007/978-3-642-13013-7_25
    12 sg:pub.10.1007/978-3-642-13190-5_1
    13 sg:pub.10.1007/978-3-642-13190-5_2
    14 sg:pub.10.1007/978-3-642-22792-9_29
    15 sg:pub.10.1007/978-3-642-29011-4_41
    16 sg:pub.10.1007/978-3-642-38553-7_22
    17 https://app.dimensions.ai/details/publication/pub.1044722064
    18 https://doi.org/10.1109/tit.1976.1055638
    19 https://doi.org/10.1137/080733954
    20 https://doi.org/10.1137/120868669
    21 https://doi.org/10.1137/s0097539705447360
    22 https://doi.org/10.1145/1568318.1568324
    23 schema:datePublished 2019-05
    24 schema:datePublishedReg 2019-05-01
    25 schema:description The “strong trapdoor function for lattice” has been constructed by Daniele Micciancio and Chris Peikert in EUROCRYPT 2012, which is simple, efficient, and easy to implement. In this paper, we present a new trapdoor function based on “ring learning with errors” problem (Ring-LWE) on lattice, and simultaneously the corresponding efficient inverse algorithm is given which involves two sub-algorithms: the trapdoor inverse algorithm and the iterative inverse algorithm. Our trapdoor function for lattice based on Ring-LWE is simultaneously more simple and efficient because of the ring structure. In addition to these advantages, our algorithm extends the parameters, and this can make our trapdoor function have a wider choice of applications.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N51fb75a4bfbb48809c51c3ac191c0e40
    30 N8c3d00afff2e45c1ad241fc36fe17b05
    31 sg:journal.1043999
    32 schema:name Trapdoor function based on the Ring-LWE and applications in communications
    33 schema:pagination 1821-1827
    34 schema:productId N04cbd57aceca4bed911776632730200f
    35 N1216dc5212e247018acafc85a0bfd0a8
    36 Na13f8e67915c4117ba876b55a23ffc07
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101106102
    38 https://doi.org/10.1007/s12652-018-0718-2
    39 schema:sdDatePublished 2019-04-11T13:56
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N72954f961cb04911ab8765056232f8a5
    42 schema:url https://link.springer.com/10.1007%2Fs12652-018-0718-2
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N04cbd57aceca4bed911776632730200f schema:name doi
    47 schema:value 10.1007/s12652-018-0718-2
    48 rdf:type schema:PropertyValue
    49 N1216dc5212e247018acafc85a0bfd0a8 schema:name readcube_id
    50 schema:value c2ec3f2f56e83c956228b8ae17d23b2ba33806e0f154e2b33239e2a193532a3a
    51 rdf:type schema:PropertyValue
    52 N311dac24bf6a4a4abf7684cc4cd886f0 rdf:first sg:person.011613037021.66
    53 rdf:rest N92d9760d60d9487dbe6e9b46356f78f4
    54 N51fb75a4bfbb48809c51c3ac191c0e40 schema:volumeNumber 10
    55 rdf:type schema:PublicationVolume
    56 N72954f961cb04911ab8765056232f8a5 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N8c3d00afff2e45c1ad241fc36fe17b05 schema:issueNumber 5
    59 rdf:type schema:PublicationIssue
    60 N92d9760d60d9487dbe6e9b46356f78f4 rdf:first sg:person.013766773444.37
    61 rdf:rest rdf:nil
    62 Na13f8e67915c4117ba876b55a23ffc07 schema:name dimensions_id
    63 schema:value pub.1101106102
    64 rdf:type schema:PropertyValue
    65 Ncb2e5eb5709a45339a676cbb45dbf29f rdf:first sg:person.011337061237.06
    66 rdf:rest N311dac24bf6a4a4abf7684cc4cd886f0
    67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Information and Computing Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Computation Theory and Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1043999 schema:issn 1868-5137
    74 1868-5145
    75 schema:name Journal of Ambient Intelligence and Humanized Computing
    76 rdf:type schema:Periodical
    77 sg:person.011337061237.06 schema:affiliation https://www.grid.ac/institutes/grid.440736.2
    78 schema:familyName Zhang
    79 schema:givenName Chengli
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337061237.06
    81 rdf:type schema:Person
    82 sg:person.011613037021.66 schema:affiliation https://www.grid.ac/institutes/grid.440736.2
    83 schema:familyName Ma
    84 schema:givenName Wenping
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613037021.66
    86 rdf:type schema:Person
    87 sg:person.013766773444.37 schema:affiliation https://www.grid.ac/institutes/grid.440736.2
    88 schema:familyName Zhao
    89 schema:givenName Feifei
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013766773444.37
    91 rdf:type schema:Person
    92 sg:pub.10.1007/11426639_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038491737
    93 https://doi.org/10.1007/11426639_7
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/11681878_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005543732
    96 https://doi.org/10.1007/11681878_8
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/11761679_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036281518
    99 https://doi.org/10.1007/11761679_27
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/3-540-44647-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014375289
    102 https://doi.org/10.1007/3-540-44647-8_13
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-1-4419-9383-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044722064
    105 https://doi.org/10.1007/978-1-4419-9383-0
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-540-24676-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265457
    108 https://doi.org/10.1007/978-3-540-24676-3_13
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-642-10366-7_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004771430
    111 https://doi.org/10.1007/978-3-642-10366-7_36
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-642-13013-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389499
    114 https://doi.org/10.1007/978-3-642-13013-7_25
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-642-13190-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305533
    117 https://doi.org/10.1007/978-3-642-13190-5_1
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-642-13190-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023605606
    120 https://doi.org/10.1007/978-3-642-13190-5_2
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-642-22792-9_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049197805
    123 https://doi.org/10.1007/978-3-642-22792-9_29
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-642-29011-4_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033795788
    126 https://doi.org/10.1007/978-3-642-29011-4_41
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-642-38553-7_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039150645
    129 https://doi.org/10.1007/978-3-642-38553-7_22
    130 rdf:type schema:CreativeWork
    131 https://app.dimensions.ai/details/publication/pub.1044722064 schema:CreativeWork
    132 https://doi.org/10.1109/tit.1976.1055638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647862
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1137/080733954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855106
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1137/120868669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869195
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1137/s0097539705447360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879617
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1145/1568318.1568324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013302643
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.440736.2 schema:alternateName Xidian University
    143 schema:name State Key Laboratory of Integrated Services Networks, Xidian University, 710071, Xi’an, People’s Republic of China
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...