An indoor gas leakage source localization algorithm using distributed maximum likelihood estimation in sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Zhang Yong, Zhang Liyi, Han Jianfeng, Ban Zhe, Yang Yi

ABSTRACT

Gas leakage source localization based on sensor networks has an important practical significance in many fields such as environmental monitoring, security protection and pollution control. This paper proposed a gas leakage source localization algorithm using distributed maximum likelihood estimation method for mobile sensor network to improve the lower performance with static sensor network. Firstly, the likelihood function of gas leakage source parameters was deduced based on the gas turbulent diffusion model. Then, the parameters of gas leakage source were estimated based on the likelihood function with the gas concentration measurement in environment. Finally, the gas leakage source location would be achieved through the iterative optimization of the likelihood function. The preliminary experimental results show that the proposed distributed Maximum Likelihood Estimation method could be achieved an acutely gas leakage source location in an indoor environment. And the reasonable path planning and dynamic topology changing could improve the positioning performance. More... »

PAGES

1703-1712

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12652-017-0624-z

DOI

http://dx.doi.org/10.1007/s12652-017-0624-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092854697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University of Commerce", 
          "id": "https://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "The College of Information, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yong", 
        "givenName": "Zhang", 
        "id": "sg:person.012154156372.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154156372.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University of Commerce", 
          "id": "https://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "The College of Information, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liyi", 
        "givenName": "Zhang", 
        "id": "sg:person.010335742143.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335742143.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University of Commerce", 
          "id": "https://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "The College of Information, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jianfeng", 
        "givenName": "Han", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University of Commerce", 
          "id": "https://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "The College of Information, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhe", 
        "givenName": "Ban", 
        "id": "sg:person.014344477772.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344477772.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University of Commerce", 
          "id": "https://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "The College of Information, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Yang", 
        "id": "sg:person.015142060372.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142060372.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2016/2080536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003515112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2016.06.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004555705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijggc.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008420569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2009.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009788014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.08.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013121079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2016.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026127830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2017.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026908860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/271547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035461869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-011-9219-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038390013", 
          "https://doi.org/10.1007/s10514-011-9219-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2013.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041288646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2010.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048822926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es202807s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055503647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2016.2550033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061252232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2009.2016481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2013.110499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061485945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2015.2397879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.885770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.889975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2302746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2385039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2695232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084948308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsens.2007.355495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095167109"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Gas leakage source localization based on sensor networks has an important practical significance in many fields such as environmental monitoring, security protection and pollution control. This paper proposed a gas leakage source localization algorithm using distributed maximum likelihood estimation method for mobile sensor network to improve the lower performance with static sensor network. Firstly, the likelihood function of gas leakage source parameters was deduced based on the gas turbulent diffusion model. Then, the parameters of gas leakage source were estimated based on the likelihood function with the gas concentration measurement in environment. Finally, the gas leakage source location would be achieved through the iterative optimization of the likelihood function. The preliminary experimental results show that the proposed distributed Maximum Likelihood Estimation method could be achieved an acutely gas leakage source location in an indoor environment. And the reasonable path planning and dynamic topology changing could improve the positioning performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12652-017-0624-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7185738", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043999", 
        "issn": [
          "1868-5137", 
          "1868-5145"
        ], 
        "name": "Journal of Ambient Intelligence and Humanized Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "An indoor gas leakage source localization algorithm using distributed maximum likelihood estimation in sensor networks", 
    "pagination": "1703-1712", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "960203e86aa237f3c18deb294052787c0a3d5458f866a4b6467f01ff445fea54"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12652-017-0624-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092854697"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12652-017-0624-z", 
      "https://app.dimensions.ai/details/publication/pub.1092854697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130805_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12652-017-0624-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0624-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0624-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0624-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0624-z'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12652-017-0624-z schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N1692e44f5ff844c7af868a446d8fba2c
4 schema:citation sg:pub.10.1007/s10514-011-9219-2
5 https://doi.org/10.1016/j.atmosenv.2006.08.044
6 https://doi.org/10.1016/j.atmosenv.2008.05.024
7 https://doi.org/10.1016/j.atmosenv.2013.02.051
8 https://doi.org/10.1016/j.atmosenv.2016.06.046
9 https://doi.org/10.1016/j.atmosenv.2017.01.014
10 https://doi.org/10.1016/j.envsoft.2010.01.006
11 https://doi.org/10.1016/j.ijggc.2012.04.001
12 https://doi.org/10.1016/j.inffus.2016.11.010
13 https://doi.org/10.1016/j.sigpro.2009.10.006
14 https://doi.org/10.1021/es202807s
15 https://doi.org/10.1109/access.2016.2550033
16 https://doi.org/10.1109/access.2017.2695232
17 https://doi.org/10.1109/icsens.2007.355495
18 https://doi.org/10.1109/lsp.2009.2016481
19 https://doi.org/10.1109/taes.2013.110499
20 https://doi.org/10.1109/tii.2015.2397879
21 https://doi.org/10.1109/tsp.2006.885770
22 https://doi.org/10.1109/tsp.2006.889975
23 https://doi.org/10.1109/tsp.2014.2302746
24 https://doi.org/10.1109/tsp.2014.2385039
25 https://doi.org/10.1155/2014/271547
26 https://doi.org/10.1155/2016/2080536
27 schema:datePublished 2019-05
28 schema:datePublishedReg 2019-05-01
29 schema:description Gas leakage source localization based on sensor networks has an important practical significance in many fields such as environmental monitoring, security protection and pollution control. This paper proposed a gas leakage source localization algorithm using distributed maximum likelihood estimation method for mobile sensor network to improve the lower performance with static sensor network. Firstly, the likelihood function of gas leakage source parameters was deduced based on the gas turbulent diffusion model. Then, the parameters of gas leakage source were estimated based on the likelihood function with the gas concentration measurement in environment. Finally, the gas leakage source location would be achieved through the iterative optimization of the likelihood function. The preliminary experimental results show that the proposed distributed Maximum Likelihood Estimation method could be achieved an acutely gas leakage source location in an indoor environment. And the reasonable path planning and dynamic topology changing could improve the positioning performance.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N09ec1bc70a134d6d8c634311e7772e75
34 Ne4a74cafcb2a49ec97fb660496eda4cc
35 sg:journal.1043999
36 schema:name An indoor gas leakage source localization algorithm using distributed maximum likelihood estimation in sensor networks
37 schema:pagination 1703-1712
38 schema:productId N46a7fe3e7df44d34938a7e2ab32dea08
39 N85f836fef4d94e1bb5b94ef46486ef57
40 Nd8bc8a4fb4db467da3847ec4f666e060
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092854697
42 https://doi.org/10.1007/s12652-017-0624-z
43 schema:sdDatePublished 2019-04-11T13:53
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N21c7e430582b49e88fab0603667bc4e7
46 schema:url https://link.springer.com/10.1007%2Fs12652-017-0624-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N09ec1bc70a134d6d8c634311e7772e75 schema:issueNumber 5
51 rdf:type schema:PublicationIssue
52 N1692e44f5ff844c7af868a446d8fba2c rdf:first sg:person.012154156372.25
53 rdf:rest Nff2fef7561bc4607a943f9d2273603c3
54 N21c7e430582b49e88fab0603667bc4e7 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N46127fdf6ab9427585c94220fcc64093 rdf:first sg:person.014344477772.19
57 rdf:rest N4bc72d842dd34f5e8b0cd4a86daf13fa
58 N46a7fe3e7df44d34938a7e2ab32dea08 schema:name readcube_id
59 schema:value 960203e86aa237f3c18deb294052787c0a3d5458f866a4b6467f01ff445fea54
60 rdf:type schema:PropertyValue
61 N4bc72d842dd34f5e8b0cd4a86daf13fa rdf:first sg:person.015142060372.26
62 rdf:rest rdf:nil
63 N85f836fef4d94e1bb5b94ef46486ef57 schema:name dimensions_id
64 schema:value pub.1092854697
65 rdf:type schema:PropertyValue
66 N9198682f15f54d37acf9aaacda78d0d1 rdf:first Nc27f4f54b4994efd8f7a87ed5b12b6fe
67 rdf:rest N46127fdf6ab9427585c94220fcc64093
68 Nc27f4f54b4994efd8f7a87ed5b12b6fe schema:affiliation https://www.grid.ac/institutes/grid.464478.d
69 schema:familyName Jianfeng
70 schema:givenName Han
71 rdf:type schema:Person
72 Nd8bc8a4fb4db467da3847ec4f666e060 schema:name doi
73 schema:value 10.1007/s12652-017-0624-z
74 rdf:type schema:PropertyValue
75 Ne4a74cafcb2a49ec97fb660496eda4cc schema:volumeNumber 10
76 rdf:type schema:PublicationVolume
77 Nff2fef7561bc4607a943f9d2273603c3 rdf:first sg:person.010335742143.37
78 rdf:rest N9198682f15f54d37acf9aaacda78d0d1
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
83 schema:name Electrical and Electronic Engineering
84 rdf:type schema:DefinedTerm
85 sg:grant.7185738 http://pending.schema.org/fundedItem sg:pub.10.1007/s12652-017-0624-z
86 rdf:type schema:MonetaryGrant
87 sg:journal.1043999 schema:issn 1868-5137
88 1868-5145
89 schema:name Journal of Ambient Intelligence and Humanized Computing
90 rdf:type schema:Periodical
91 sg:person.010335742143.37 schema:affiliation https://www.grid.ac/institutes/grid.464478.d
92 schema:familyName Liyi
93 schema:givenName Zhang
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335742143.37
95 rdf:type schema:Person
96 sg:person.012154156372.25 schema:affiliation https://www.grid.ac/institutes/grid.464478.d
97 schema:familyName Yong
98 schema:givenName Zhang
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154156372.25
100 rdf:type schema:Person
101 sg:person.014344477772.19 schema:affiliation https://www.grid.ac/institutes/grid.464478.d
102 schema:familyName Zhe
103 schema:givenName Ban
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344477772.19
105 rdf:type schema:Person
106 sg:person.015142060372.26 schema:affiliation https://www.grid.ac/institutes/grid.464478.d
107 schema:familyName Yi
108 schema:givenName Yang
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142060372.26
110 rdf:type schema:Person
111 sg:pub.10.1007/s10514-011-9219-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390013
112 https://doi.org/10.1007/s10514-011-9219-2
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.atmosenv.2006.08.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013121079
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.atmosenv.2008.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035461869
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.atmosenv.2013.02.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041288646
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.atmosenv.2016.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004555705
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.atmosenv.2017.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026908860
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.envsoft.2010.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822926
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijggc.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008420569
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.inffus.2016.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026127830
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.sigpro.2009.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009788014
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/es202807s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055503647
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/access.2016.2550033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061252232
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/access.2017.2695232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084948308
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/icsens.2007.355495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095167109
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/lsp.2009.2016481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377431
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/taes.2013.110499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061485945
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tii.2015.2397879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632588
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tsp.2006.885770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800325
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tsp.2006.889975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800408
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tsp.2014.2302746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804242
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tsp.2014.2385039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804672
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1155/2014/271547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032806258
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1155/2016/2080536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003515112
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.464478.d schema:alternateName Tianjin University of Commerce
159 schema:name The College of Information, Tianjin University of Commerce, 300134, Tianjin, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...