Actual deviation correction based on weight improvement for 10-unit Dolph–Chebyshev array antennas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Li Wei, Xu Changwu, He Yue, Chen Liguo, Sun Lining, Fang Guoqiang

ABSTRACT

In order to achieve higher gains and lower side lobe in antenna design, array antenna is conventionally adopted. Besides, Chebyshev polynomial amplitude ratio is widely employed in the design, and it optimizes the main and side lobes under specific main lobe width and side lobe level. However, the actual product can be easily affected by machining error and the antenna material property, which change along with the frequency. The influence is evident at millimeter waves level owing to the short wave length. In micro-strip antenna applications, the test frequency for key parameters of high-frequency base material is limited by 10 GHz, while the parameters have no explicit definition at higher frequency. Therefore, a large mismatch between the design and actual product may exist when the frequency reaches 77 GHz or higher. In this paper, a weighting method is proposed to compensate parameters of the base material and machining error. Based on this method, simulation result of the design is revised to match tested result of actual product. More... »

PAGES

1713-1726

References to SciGraph publications

  • 2017. Design of Microstrip Antenna with Improved Bandwidth for Biomedical Application in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DATA ENGINEERING AND COMMUNICATION TECHNOLOGY
  • 2017-02. Numerical constructions involving Chebyshev polynomials in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2016-03. Generating Functions of Chebyshev Polynomials in Three Variables in JOURNAL OF MATHEMATICAL SCIENCES
  • 2013. Comparison between Two Methods for Characterization of a Patch Antenna Array: Experimental and by Simulation in MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12652-017-0589-y

    DOI

    http://dx.doi.org/10.1007/s12652-017-0589-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092115293


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Intelligent Robot Technology, Soochow University, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Science and Technology in Engineering, Huazhong University, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Changwu", 
            "givenName": "Xu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai University", 
              "id": "https://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Electronic and Information Engineering, Shanghai University, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yue", 
            "givenName": "He", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Mechanical and Electronic Engineering, Harbin Institute of Technology, Haerbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liguo", 
            "givenName": "Chen", 
            "id": "sg:person.012053677031.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053677031.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Mechanical and Electronic Engineering, Harbin Institute of Technology, Haerbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lining", 
            "givenName": "Sun", 
            "id": "sg:person.016400566425.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400566425.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai University of Engineering Sciences", 
              "id": "https://www.grid.ac/institutes/grid.412542.4", 
              "name": [
                "Vehicle Engineering, Shanghai University of Engineering Science, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guoqiang", 
            "givenName": "Fang", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.procs.2016.07.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015784957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38279-6_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019301879", 
              "https://doi.org/10.1007/978-3-642-38279-6_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-1675-2_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025254910", 
              "https://doi.org/10.1007/978-981-10-1675-2_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2016.07.328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038003904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03772063.1998.11416026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039744831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10958-016-2739-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044733195", 
              "https://doi.org/10.1007/s10958-016-2739-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el.2014.2206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056755527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-map.2014.0544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056831542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-h-2.1989.0009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056854433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tap.2012.2186270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061499857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmtt.2014.2354134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061710574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/20210-2473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072601816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040577917020118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084223058", 
              "https://doi.org/10.1134/s0040577917020118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/rws.2013.6486654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093641641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ecai.2016.7861091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094008076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aps.2016.7696077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094411447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/eumc.2016.7824269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094800211"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "In order to achieve higher gains and lower side lobe in antenna design, array antenna is conventionally adopted. Besides, Chebyshev polynomial amplitude ratio is widely employed in the design, and it optimizes the main and side lobes under specific main lobe width and side lobe level. However, the actual product can be easily affected by machining error and the antenna material property, which change along with the frequency. The influence is evident at millimeter waves level owing to the short wave length. In micro-strip antenna applications, the test frequency for key parameters of high-frequency base material is limited by 10 GHz, while the parameters have no explicit definition at higher frequency. Therefore, a large mismatch between the design and actual product may exist when the frequency reaches 77 GHz or higher. In this paper, a weighting method is proposed to compensate parameters of the base material and machining error. Based on this method, simulation result of the design is revised to match tested result of actual product.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12652-017-0589-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043999", 
            "issn": [
              "1868-5137", 
              "1868-5145"
            ], 
            "name": "Journal of Ambient Intelligence and Humanized Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Actual deviation correction based on weight improvement for 10-unit Dolph\u2013Chebyshev array antennas", 
        "pagination": "1713-1726", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cace0f5ea6d0e31f72053fbc29af7ed4003fab23049bb73bb0f0aea958e73712"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12652-017-0589-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092115293"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12652-017-0589-y", 
          "https://app.dimensions.ai/details/publication/pub.1092115293"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12652-017-0589-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0589-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0589-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0589-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0589-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    158 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12652-017-0589-y schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N5b67c96a414d4365bbfff4849afd61c2
    4 schema:citation sg:pub.10.1007/978-3-642-38279-6_28
    5 sg:pub.10.1007/978-981-10-1675-2_22
    6 sg:pub.10.1007/s10958-016-2739-8
    7 sg:pub.10.1134/s0040577917020118
    8 https://doi.org/10.1016/j.procs.2016.07.185
    9 https://doi.org/10.1016/j.procs.2016.07.328
    10 https://doi.org/10.1049/el.2014.2206
    11 https://doi.org/10.1049/iet-map.2014.0544
    12 https://doi.org/10.1049/ip-h-2.1989.0009
    13 https://doi.org/10.1080/03772063.1998.11416026
    14 https://doi.org/10.1109/aps.2016.7696077
    15 https://doi.org/10.1109/ecai.2016.7861091
    16 https://doi.org/10.1109/eumc.2016.7824269
    17 https://doi.org/10.1109/rws.2013.6486654
    18 https://doi.org/10.1109/tap.2012.2186270
    19 https://doi.org/10.1109/tmtt.2014.2354134
    20 https://doi.org/10.5120/20210-2473
    21 schema:datePublished 2019-05
    22 schema:datePublishedReg 2019-05-01
    23 schema:description In order to achieve higher gains and lower side lobe in antenna design, array antenna is conventionally adopted. Besides, Chebyshev polynomial amplitude ratio is widely employed in the design, and it optimizes the main and side lobes under specific main lobe width and side lobe level. However, the actual product can be easily affected by machining error and the antenna material property, which change along with the frequency. The influence is evident at millimeter waves level owing to the short wave length. In micro-strip antenna applications, the test frequency for key parameters of high-frequency base material is limited by 10 GHz, while the parameters have no explicit definition at higher frequency. Therefore, a large mismatch between the design and actual product may exist when the frequency reaches 77 GHz or higher. In this paper, a weighting method is proposed to compensate parameters of the base material and machining error. Based on this method, simulation result of the design is revised to match tested result of actual product.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N5dcb0255a9cf41b9b6f58b347a44522d
    28 N81a0b459f581448c9387d7d80809e669
    29 sg:journal.1043999
    30 schema:name Actual deviation correction based on weight improvement for 10-unit Dolph–Chebyshev array antennas
    31 schema:pagination 1713-1726
    32 schema:productId N28f963bc142d4d7791abeff2e83d8840
    33 N59ae11cb248741109aa69e30db1d5916
    34 Nf775437412f84b62a4db2ca4a2202d19
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092115293
    36 https://doi.org/10.1007/s12652-017-0589-y
    37 schema:sdDatePublished 2019-04-11T13:55
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N92c4177af860451ba09e80d3681a52c0
    40 schema:url https://link.springer.com/10.1007%2Fs12652-017-0589-y
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N03133065e97849e4b6d9640939515cb0 schema:affiliation N5dc76cae5b234339bd10e2c8e2850021
    45 schema:familyName Changwu
    46 schema:givenName Xu
    47 rdf:type schema:Person
    48 N09a05d6e53844d03a2a1bf35699d95b0 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    49 schema:familyName Wei
    50 schema:givenName Li
    51 rdf:type schema:Person
    52 N245d2eee196744e6bbc0e5d937ee50eb schema:affiliation https://www.grid.ac/institutes/grid.412542.4
    53 schema:familyName Guoqiang
    54 schema:givenName Fang
    55 rdf:type schema:Person
    56 N28f963bc142d4d7791abeff2e83d8840 schema:name dimensions_id
    57 schema:value pub.1092115293
    58 rdf:type schema:PropertyValue
    59 N502f5074497c4d7fa81f1e8f568c8928 rdf:first N245d2eee196744e6bbc0e5d937ee50eb
    60 rdf:rest rdf:nil
    61 N59ae11cb248741109aa69e30db1d5916 schema:name readcube_id
    62 schema:value cace0f5ea6d0e31f72053fbc29af7ed4003fab23049bb73bb0f0aea958e73712
    63 rdf:type schema:PropertyValue
    64 N5b67c96a414d4365bbfff4849afd61c2 rdf:first N09a05d6e53844d03a2a1bf35699d95b0
    65 rdf:rest N847bd9a280cc462794eae27c32c6dde6
    66 N5dc76cae5b234339bd10e2c8e2850021 schema:name Science and Technology in Engineering, Huazhong University, Wuhan, China
    67 rdf:type schema:Organization
    68 N5dcb0255a9cf41b9b6f58b347a44522d schema:issueNumber 5
    69 rdf:type schema:PublicationIssue
    70 N676d4a1a0f66461fbe89c5f32da621a6 rdf:first N7dc22449636845b7b0965e8de694d7f6
    71 rdf:rest N93e0cc278fa54484971f71136aaae400
    72 N7dc22449636845b7b0965e8de694d7f6 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
    73 schema:familyName Yue
    74 schema:givenName He
    75 rdf:type schema:Person
    76 N81a0b459f581448c9387d7d80809e669 schema:volumeNumber 10
    77 rdf:type schema:PublicationVolume
    78 N847bd9a280cc462794eae27c32c6dde6 rdf:first N03133065e97849e4b6d9640939515cb0
    79 rdf:rest N676d4a1a0f66461fbe89c5f32da621a6
    80 N92c4177af860451ba09e80d3681a52c0 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N93e0cc278fa54484971f71136aaae400 rdf:first sg:person.012053677031.70
    83 rdf:rest N97b22bec6dbd4db8970fc01134cebfdd
    84 N97b22bec6dbd4db8970fc01134cebfdd rdf:first sg:person.016400566425.85
    85 rdf:rest N502f5074497c4d7fa81f1e8f568c8928
    86 Nf775437412f84b62a4db2ca4a2202d19 schema:name doi
    87 schema:value 10.1007/s12652-017-0589-y
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Technology
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Communications Technologies
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1043999 schema:issn 1868-5137
    96 1868-5145
    97 schema:name Journal of Ambient Intelligence and Humanized Computing
    98 rdf:type schema:Periodical
    99 sg:person.012053677031.70 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    100 schema:familyName Liguo
    101 schema:givenName Chen
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053677031.70
    103 rdf:type schema:Person
    104 sg:person.016400566425.85 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    105 schema:familyName Lining
    106 schema:givenName Sun
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016400566425.85
    108 rdf:type schema:Person
    109 sg:pub.10.1007/978-3-642-38279-6_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019301879
    110 https://doi.org/10.1007/978-3-642-38279-6_28
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-981-10-1675-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025254910
    113 https://doi.org/10.1007/978-981-10-1675-2_22
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s10958-016-2739-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044733195
    116 https://doi.org/10.1007/s10958-016-2739-8
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1134/s0040577917020118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084223058
    119 https://doi.org/10.1134/s0040577917020118
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.procs.2016.07.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015784957
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.procs.2016.07.328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038003904
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1049/el.2014.2206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056755527
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1049/iet-map.2014.0544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056831542
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1049/ip-h-2.1989.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056854433
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1080/03772063.1998.11416026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039744831
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/aps.2016.7696077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094411447
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/ecai.2016.7861091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094008076
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/eumc.2016.7824269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094800211
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/rws.2013.6486654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093641641
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tap.2012.2186270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061499857
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tmtt.2014.2354134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061710574
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.5120/20210-2473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072601816
    146 rdf:type schema:CreativeWork
    147 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    148 schema:name Mechanical and Electronic Engineering, Harbin Institute of Technology, Haerbin, China
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
    151 schema:name Intelligent Robot Technology, Soochow University, Suzhou, China
    152 rdf:type schema:Organization
    153 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
    154 schema:name Electronic and Information Engineering, Shanghai University, Shanghai, China
    155 rdf:type schema:Organization
    156 https://www.grid.ac/institutes/grid.412542.4 schema:alternateName Shanghai University of Engineering Sciences
    157 schema:name Vehicle Engineering, Shanghai University of Engineering Science, Shanghai, China
    158 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...