Estimation of energy consumption through parallel computing in wireless sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-03

AUTHORS

Massinissa Lounis, Ahcène Bounceur, Reinhardt Euler, Bernard Pottier

ABSTRACT

The lifetime of a wireless sensor network is the most important design parameter to take into account. Given the autonomous nature of the sensor nodes, this period is mainly related to their energy consumption. Hence, the high interest to evaluate through accurate and rapid simulations the energy consumption for this kind of networks. However, in the case of a network with several thousand nodes, the simulation can be very slow and even impossible. In this paper, we present a new model for computing the energy consumption in wireless sensor networks in parallel. The model uses discrete event simulation implemented on a massively parallel GPU architecture. The results show that the proposed model provides simulation times significantly shorter than those obtained with the sequential model for large networks and for long simulations. This improvement is even more significant if the processing on each node is very time consuming. Finally, the proposed model has been fully integrated and validated on the CupCarbon simulator. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12652-017-0582-5

DOI

http://dx.doi.org/10.1007/s12652-017-0582-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092066210


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Western Brittany", 
          "id": "https://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "LIMED Laboratory, Department of computer science, University of Bejaia, Bejaia, Algeria", 
            "Lab-STICC UMR CNRS 6285, Universit\u00e9 de Bretagne Occidentale, 20, Avenue Victor Le Gorgeu, 29238, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lounis", 
        "givenName": "Massinissa", 
        "id": "sg:person.012271241573.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271241573.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Western Brittany", 
          "id": "https://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Lab-STICC UMR CNRS 6285, Universit\u00e9 de Bretagne Occidentale, 20, Avenue Victor Le Gorgeu, 29238, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bounceur", 
        "givenName": "Ahc\u00e8ne", 
        "id": "sg:person.015034421061.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015034421061.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Western Brittany", 
          "id": "https://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Lab-STICC UMR CNRS 6285, Universit\u00e9 de Bretagne Occidentale, 20, Avenue Victor Le Gorgeu, 29238, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Euler", 
        "givenName": "Reinhardt", 
        "id": "sg:person.011061734455.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061734455.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Western Brittany", 
          "id": "https://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Lab-STICC UMR CNRS 6285, Universit\u00e9 de Bretagne Occidentale, 20, Avenue Victor Le Gorgeu, 29238, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pottier", 
        "givenName": "Bernard", 
        "id": "sg:person.010615736205.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615736205.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-387-23466-7_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000519497", 
          "https://doi.org/10.1007/0-387-23466-7_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/346855.346870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004455261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-011-0059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015948797", 
          "https://doi.org/10.1007/s12652-011-0059-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2142-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017468052", 
          "https://doi.org/10.1007/s00500-016-2142-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2142-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017468052", 
          "https://doi.org/10.1007/s00500-016-2142-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2896387.2900336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021504486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1473-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021564983", 
          "https://doi.org/10.1007/s00500-014-1473-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-012-0131-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023554671", 
          "https://doi.org/10.1007/s12652-012-0131-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2429-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037184145", 
          "https://doi.org/10.1007/s00500-016-2429-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2429-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037184145", 
          "https://doi.org/10.1007/s00500-016-2429-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/958491.958506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040041163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2234-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041012794", 
          "https://doi.org/10.1007/s00500-016-2234-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2234-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041012794", 
          "https://doi.org/10.1007/s00500-016-2234-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-015-0323-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049749469", 
          "https://doi.org/10.1007/s12652-015-0323-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcom.2006.1668384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061394338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipsn.2005.1440978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093352472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iceee.2015.7357959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093698718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eucnc.2015.7194086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094305599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/emnets.2005.1469097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094383141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/anss.2005.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094484724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cimca.2008.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095002979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nbis.2014.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095075598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icns.2009.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095665851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.simutools2010.8725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099262605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.simutools2010.8725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099262605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.simutools.2014.254811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099347974"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-03", 
    "datePublishedReg": "2017-10-03", 
    "description": "The lifetime of a wireless sensor network is the most important design parameter to take into account. Given the autonomous nature of the sensor nodes, this period is mainly related to their energy consumption. Hence, the high interest to evaluate through accurate and rapid simulations the energy consumption for this kind of networks. However, in the case of a network with several thousand nodes, the simulation can be very slow and even impossible. In this paper, we present a new model for computing the energy consumption in wireless sensor networks in parallel. The model uses discrete event simulation implemented on a massively parallel GPU architecture. The results show that the proposed model provides simulation times significantly shorter than those obtained with the sequential model for large networks and for long simulations. This improvement is even more significant if the processing on each node is very time consuming. Finally, the proposed model has been fully integrated and validated on the CupCarbon simulator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12652-017-0582-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4522936", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043999", 
        "issn": [
          "1868-5137", 
          "1868-5145"
        ], 
        "name": "Journal of Ambient Intelligence and Humanized Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Estimation of energy consumption through parallel computing in wireless sensor networks", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e42a529949c7910371ae5403e831f6f53ee780919287f44176bfd3ac9e8081db"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12652-017-0582-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092066210"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12652-017-0582-5", 
      "https://app.dimensions.ai/details/publication/pub.1092066210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12652-017-0582-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0582-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0582-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0582-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-017-0582-5'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12652-017-0582-5 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Ne0a2cf2ef7904259903c5edf18f47fa2
4 schema:citation sg:pub.10.1007/0-387-23466-7_13
5 sg:pub.10.1007/s00500-014-1473-8
6 sg:pub.10.1007/s00500-016-2142-x
7 sg:pub.10.1007/s00500-016-2234-7
8 sg:pub.10.1007/s00500-016-2429-y
9 sg:pub.10.1007/s12652-011-0059-x
10 sg:pub.10.1007/s12652-012-0131-1
11 sg:pub.10.1007/s12652-015-0323-6
12 https://doi.org/10.1109/anss.2005.27
13 https://doi.org/10.1109/cimca.2008.170
14 https://doi.org/10.1109/emnets.2005.1469097
15 https://doi.org/10.1109/eucnc.2015.7194086
16 https://doi.org/10.1109/iceee.2015.7357959
17 https://doi.org/10.1109/icns.2009.75
18 https://doi.org/10.1109/ipsn.2005.1440978
19 https://doi.org/10.1109/mcom.2006.1668384
20 https://doi.org/10.1109/nbis.2014.107
21 https://doi.org/10.1145/2896387.2900336
22 https://doi.org/10.1145/346855.346870
23 https://doi.org/10.1145/958491.958506
24 https://doi.org/10.4108/icst.simutools.2014.254811
25 https://doi.org/10.4108/icst.simutools2010.8725
26 schema:datePublished 2017-10-03
27 schema:datePublishedReg 2017-10-03
28 schema:description The lifetime of a wireless sensor network is the most important design parameter to take into account. Given the autonomous nature of the sensor nodes, this period is mainly related to their energy consumption. Hence, the high interest to evaluate through accurate and rapid simulations the energy consumption for this kind of networks. However, in the case of a network with several thousand nodes, the simulation can be very slow and even impossible. In this paper, we present a new model for computing the energy consumption in wireless sensor networks in parallel. The model uses discrete event simulation implemented on a massively parallel GPU architecture. The results show that the proposed model provides simulation times significantly shorter than those obtained with the sequential model for large networks and for long simulations. This improvement is even more significant if the processing on each node is very time consuming. Finally, the proposed model has been fully integrated and validated on the CupCarbon simulator.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1043999
33 schema:name Estimation of energy consumption through parallel computing in wireless sensor networks
34 schema:pagination 1-13
35 schema:productId N3b3d6b7115f4482d978ac45ea642ba69
36 Ndb2d84b663344a0b8b11c8cad60c160e
37 Nf815624a64c34bedab1fd64b3f3baf4d
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092066210
39 https://doi.org/10.1007/s12652-017-0582-5
40 schema:sdDatePublished 2019-04-10T21:53
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N13e881bbdfd44819b52469fb67e062fe
43 schema:url https://link.springer.com/10.1007%2Fs12652-017-0582-5
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N13e881bbdfd44819b52469fb67e062fe schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N3a2fc652f510475f8ca8ffe50cfbe16a rdf:first sg:person.015034421061.22
50 rdf:rest N5c38441213284b559979144c9d43e677
51 N3b3d6b7115f4482d978ac45ea642ba69 schema:name doi
52 schema:value 10.1007/s12652-017-0582-5
53 rdf:type schema:PropertyValue
54 N5c38441213284b559979144c9d43e677 rdf:first sg:person.011061734455.07
55 rdf:rest N8cbc37cab7824226bc2e1c2f4932c81f
56 N8cbc37cab7824226bc2e1c2f4932c81f rdf:first sg:person.010615736205.35
57 rdf:rest rdf:nil
58 Ndb2d84b663344a0b8b11c8cad60c160e schema:name dimensions_id
59 schema:value pub.1092066210
60 rdf:type schema:PropertyValue
61 Ne0a2cf2ef7904259903c5edf18f47fa2 rdf:first sg:person.012271241573.96
62 rdf:rest N3a2fc652f510475f8ca8ffe50cfbe16a
63 Nf815624a64c34bedab1fd64b3f3baf4d schema:name readcube_id
64 schema:value e42a529949c7910371ae5403e831f6f53ee780919287f44176bfd3ac9e8081db
65 rdf:type schema:PropertyValue
66 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
67 schema:name Technology
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
70 schema:name Communications Technologies
71 rdf:type schema:DefinedTerm
72 sg:grant.4522936 http://pending.schema.org/fundedItem sg:pub.10.1007/s12652-017-0582-5
73 rdf:type schema:MonetaryGrant
74 sg:journal.1043999 schema:issn 1868-5137
75 1868-5145
76 schema:name Journal of Ambient Intelligence and Humanized Computing
77 rdf:type schema:Periodical
78 sg:person.010615736205.35 schema:affiliation https://www.grid.ac/institutes/grid.6289.5
79 schema:familyName Pottier
80 schema:givenName Bernard
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615736205.35
82 rdf:type schema:Person
83 sg:person.011061734455.07 schema:affiliation https://www.grid.ac/institutes/grid.6289.5
84 schema:familyName Euler
85 schema:givenName Reinhardt
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061734455.07
87 rdf:type schema:Person
88 sg:person.012271241573.96 schema:affiliation https://www.grid.ac/institutes/grid.6289.5
89 schema:familyName Lounis
90 schema:givenName Massinissa
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271241573.96
92 rdf:type schema:Person
93 sg:person.015034421061.22 schema:affiliation https://www.grid.ac/institutes/grid.6289.5
94 schema:familyName Bounceur
95 schema:givenName Ahcène
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015034421061.22
97 rdf:type schema:Person
98 sg:pub.10.1007/0-387-23466-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000519497
99 https://doi.org/10.1007/0-387-23466-7_13
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00500-014-1473-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021564983
102 https://doi.org/10.1007/s00500-014-1473-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00500-016-2142-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017468052
105 https://doi.org/10.1007/s00500-016-2142-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00500-016-2234-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041012794
108 https://doi.org/10.1007/s00500-016-2234-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00500-016-2429-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037184145
111 https://doi.org/10.1007/s00500-016-2429-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s12652-011-0059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015948797
114 https://doi.org/10.1007/s12652-011-0059-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12652-012-0131-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023554671
117 https://doi.org/10.1007/s12652-012-0131-1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s12652-015-0323-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049749469
120 https://doi.org/10.1007/s12652-015-0323-6
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/anss.2005.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094484724
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/cimca.2008.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095002979
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/emnets.2005.1469097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094383141
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/eucnc.2015.7194086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094305599
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/iceee.2015.7357959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093698718
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/icns.2009.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095665851
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/ipsn.2005.1440978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093352472
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/mcom.2006.1668384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061394338
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/nbis.2014.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095075598
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/2896387.2900336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021504486
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/346855.346870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004455261
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/958491.958506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040041163
145 rdf:type schema:CreativeWork
146 https://doi.org/10.4108/icst.simutools.2014.254811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099347974
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4108/icst.simutools2010.8725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099262605
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.6289.5 schema:alternateName University of Western Brittany
151 schema:name LIMED Laboratory, Department of computer science, University of Bejaia, Bejaia, Algeria
152 Lab-STICC UMR CNRS 6285, Université de Bretagne Occidentale, 20, Avenue Victor Le Gorgeu, 29238, Brest, France
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...