Activity modeling under uncertainty by trace of objects in smart homes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Farzad Amirjavid, Abdenour Bouzouane, Bruno Bouchard

ABSTRACT

A typical resident of a smart home can be an Alzheimer patient that forgets sometimes to complete the activities that he begins. The key point to assist the smart home resident is to model the activities and discover correct realization patterns of activities. To accomplish this task, we apply sensors to provide primary data about realization patterns of actions, operations, plans, goals and generally any objective that the smart home resident may desire to do. In the consequence, by applying fuzzy clustering techniques, we are able to mine sensor data to retrieve the realization patterns of activities, and so the prediction patterns of intentions are recognizable. Comparing the realization patterns with prediction patterns of activities, we would be able to predict the intention of the resident about the activity that the resident considers to realize. In this way, we would be able to provide hypotheses about the resident goals and his possible goal achievement’s defects. Spatiotemporal aspects of daily activities such as movement of objects are surveyed to discover the patterns of activities realized by the smart homes residents. In this research, uncertainty is considered as a property of activity recognition. More... »

PAGES

159-167

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12652-012-0156-5

DOI

http://dx.doi.org/10.1007/s12652-012-0156-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045005897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "Computer Science Department, University of Quebec at Chicoutimi (UQAC), 555, University Boulevard, Chicoutimi, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amirjavid", 
        "givenName": "Farzad", 
        "id": "sg:person.015662503435.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662503435.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "Computer Science Department, University of Quebec at Chicoutimi (UQAC), 555, University Boulevard, Chicoutimi, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouzouane", 
        "givenName": "Abdenour", 
        "id": "sg:person.015150332556.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150332556.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "Computer Science Department, University of Quebec at Chicoutimi (UQAC), 555, University Boulevard, Chicoutimi, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchard", 
        "givenName": "Bruno", 
        "id": "sg:person.014102265512.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102265512.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-247x(68)90078-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008678982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7970-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018835825", 
          "https://doi.org/10.1007/978-1-4419-7970-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7970-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018835825", 
          "https://doi.org/10.1007/978-1-4419-7970-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1740600.1740604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027567915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839510701492579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042210598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11113/jt.v43.782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062045855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20965/jaciii.1997.p0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068818256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/978-94-91216-05-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088313041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-91216-05-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088313041", 
          "https://doi.org/10.2991/978-94-91216-05-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-91216-05-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088313041", 
          "https://doi.org/10.2991/978-94-91216-05-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/percom.2003.1192783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093554729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2010.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095077409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:20070390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098686246"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "A typical resident of a smart home can be an Alzheimer patient that forgets sometimes to complete the activities that he begins. The key point to assist the smart home resident is to model the activities and discover correct realization patterns of activities. To accomplish this task, we apply sensors to provide primary data about realization patterns of actions, operations, plans, goals and generally any objective that the smart home resident may desire to do. In the consequence, by applying fuzzy clustering techniques, we are able to mine sensor data to retrieve the realization patterns of activities, and so the prediction patterns of intentions are recognizable. Comparing the realization patterns with prediction patterns of activities, we would be able to predict the intention of the resident about the activity that the resident considers to realize. In this way, we would be able to provide hypotheses about the resident goals and his possible goal achievement\u2019s defects. Spatiotemporal aspects of daily activities such as movement of objects are surveyed to discover the patterns of activities realized by the smart homes residents. In this research, uncertainty is considered as a property of activity recognition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12652-012-0156-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043999", 
        "issn": [
          "1868-5137", 
          "1868-5145"
        ], 
        "name": "Journal of Ambient Intelligence and Humanized Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Activity modeling under uncertainty by trace of objects in smart homes", 
    "pagination": "159-167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d660a276da9391bbc70889805acbe88abda6f67942e9a15ebb27cde64faa9048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12652-012-0156-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045005897"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12652-012-0156-5", 
      "https://app.dimensions.ai/details/publication/pub.1045005897"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12652-012-0156-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12652-012-0156-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12652-012-0156-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12652-012-0156-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12652-012-0156-5'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12652-012-0156-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N20059e3e6889411da8af434e5283536d
4 schema:citation sg:pub.10.1007/978-1-4419-7970-4
5 sg:pub.10.2991/978-94-91216-05-3_2
6 https://doi.org/10.1016/0022-247x(68)90078-4
7 https://doi.org/10.1016/0165-0114(78)90029-5
8 https://doi.org/10.1049/cp:20070390
9 https://doi.org/10.1080/08839510701492579
10 https://doi.org/10.1109/icdmw.2010.164
11 https://doi.org/10.1109/percom.2003.1192783
12 https://doi.org/10.11113/jt.v43.782
13 https://doi.org/10.1145/1740600.1740604
14 https://doi.org/10.20965/jaciii.1997.p0031
15 https://doi.org/10.2991/978-94-91216-05-3_2
16 schema:datePublished 2014-02
17 schema:datePublishedReg 2014-02-01
18 schema:description A typical resident of a smart home can be an Alzheimer patient that forgets sometimes to complete the activities that he begins. The key point to assist the smart home resident is to model the activities and discover correct realization patterns of activities. To accomplish this task, we apply sensors to provide primary data about realization patterns of actions, operations, plans, goals and generally any objective that the smart home resident may desire to do. In the consequence, by applying fuzzy clustering techniques, we are able to mine sensor data to retrieve the realization patterns of activities, and so the prediction patterns of intentions are recognizable. Comparing the realization patterns with prediction patterns of activities, we would be able to predict the intention of the resident about the activity that the resident considers to realize. In this way, we would be able to provide hypotheses about the resident goals and his possible goal achievement’s defects. Spatiotemporal aspects of daily activities such as movement of objects are surveyed to discover the patterns of activities realized by the smart homes residents. In this research, uncertainty is considered as a property of activity recognition.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N61d4cb726de0480fae3408d46c226ff4
23 Nbd16090876ef46c1aed44640d22ff07d
24 sg:journal.1043999
25 schema:name Activity modeling under uncertainty by trace of objects in smart homes
26 schema:pagination 159-167
27 schema:productId N10a89ff23b904bf98b260b7a7a4346ef
28 N7f06a63030e64676a6f7c8e6fdf5e914
29 N9caaed1d5b4447f890b8a4d92c95a356
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045005897
31 https://doi.org/10.1007/s12652-012-0156-5
32 schema:sdDatePublished 2019-04-10T17:34
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nd99fa4616dbb47d4ad29c4197fc49cec
35 schema:url http://link.springer.com/10.1007%2Fs12652-012-0156-5
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N10a89ff23b904bf98b260b7a7a4346ef schema:name doi
40 schema:value 10.1007/s12652-012-0156-5
41 rdf:type schema:PropertyValue
42 N20059e3e6889411da8af434e5283536d rdf:first sg:person.015662503435.46
43 rdf:rest Nda18f19eabc54556b54ef8577cbd56cb
44 N61d4cb726de0480fae3408d46c226ff4 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N7f06a63030e64676a6f7c8e6fdf5e914 schema:name dimensions_id
47 schema:value pub.1045005897
48 rdf:type schema:PropertyValue
49 N9caaed1d5b4447f890b8a4d92c95a356 schema:name readcube_id
50 schema:value d660a276da9391bbc70889805acbe88abda6f67942e9a15ebb27cde64faa9048
51 rdf:type schema:PropertyValue
52 Nbd16090876ef46c1aed44640d22ff07d schema:volumeNumber 5
53 rdf:type schema:PublicationVolume
54 Nc758096ca0114c688cd40b419ee173a8 rdf:first sg:person.014102265512.68
55 rdf:rest rdf:nil
56 Nd99fa4616dbb47d4ad29c4197fc49cec schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nda18f19eabc54556b54ef8577cbd56cb rdf:first sg:person.015150332556.91
59 rdf:rest Nc758096ca0114c688cd40b419ee173a8
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:journal.1043999 schema:issn 1868-5137
67 1868-5145
68 schema:name Journal of Ambient Intelligence and Humanized Computing
69 rdf:type schema:Periodical
70 sg:person.014102265512.68 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
71 schema:familyName Bouchard
72 schema:givenName Bruno
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102265512.68
74 rdf:type schema:Person
75 sg:person.015150332556.91 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
76 schema:familyName Bouzouane
77 schema:givenName Abdenour
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150332556.91
79 rdf:type schema:Person
80 sg:person.015662503435.46 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
81 schema:familyName Amirjavid
82 schema:givenName Farzad
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662503435.46
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4419-7970-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018835825
86 https://doi.org/10.1007/978-1-4419-7970-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.2991/978-94-91216-05-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088313041
89 https://doi.org/10.2991/978-94-91216-05-3_2
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0022-247x(68)90078-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008678982
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0165-0114(78)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688140
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1049/cp:20070390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098686246
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/08839510701492579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042210598
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/icdmw.2010.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095077409
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/percom.2003.1192783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093554729
102 rdf:type schema:CreativeWork
103 https://doi.org/10.11113/jt.v43.782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062045855
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1145/1740600.1740604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027567915
106 rdf:type schema:CreativeWork
107 https://doi.org/10.20965/jaciii.1997.p0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068818256
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2991/978-94-91216-05-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088313041
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.265695.b schema:alternateName University of Quebec
112 schema:name Computer Science Department, University of Quebec at Chicoutimi (UQAC), 555, University Boulevard, Chicoutimi, QC, Canada
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...