Comparison of turbulent flow measurement schemes for 4D flow MRI View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Hoijn Ha, Hanwook Park

ABSTRACT

Recently, time-resolved 3D phase contrast magnetic resonance imaging, which is also called 4D flow MRI or 4D PC-MRI, has been widely utilized to investigate spatial and temporal variations in the hemodynamic characteristics of blood flows. The conventional 4D flow MRI only provides the ensemble-averaged mean flow information but misses flow fluctuation because of turbulence. There have been some new manners for turbulence quantification of the blood flow using 4D flow MRI to acquire the fluctuation intensity of the turbulent flow. Although the previous studies showed that a minimum of six flow encoding is needed to perfectly describe six independent components of the 3 × 3 symmetric Reynolds stress tensor, the optimum flow encoding scheme for turbulence has not been clearly revealed. In this study, we compared and evaluated the uncertainty of mean velocity and Reynolds stress tensor in 4D flow MRI with various flow encoding schemes. The results showed that six- to fifteen-direction measurements could result 29–51% less noise in the velocity field and 34–57% less noise in the TKE field. In addition, higher number of flow encoding had less noise in Reynolds stress estimation. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-019-00556-7

DOI

http://dx.doi.org/10.1007/s12650-019-00556-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113199919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Mechanical and Biomedical Engineering, Kangwon National University, 24341, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Hoijn", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University", 
          "id": "https://www.grid.ac/institutes/grid.412674.2", 
          "name": [
            "Department of Medical and Mechatronics Engineering, Soonchunhyang University, 22 Soonchunhyang-Ro, 31538, Asan, Chungnam, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Hanwook", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-13-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000603636", 
          "https://doi.org/10.1186/1532-429x-13-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001189607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0139025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003098239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2015.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003289150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.973370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003659065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.973370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003659065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.973370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003659065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004544543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004544543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.484766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004907314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.484766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004907314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0151540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005012028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0151540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005012028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880010404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005401831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010422622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014696664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.5.3.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020081887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029763149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034430650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035793760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035793760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036112789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep39773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037535251", 
          "https://doi.org/10.1038/srep39773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038973072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039890283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-011-0854-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315927", 
          "https://doi.org/10.1007/s11517-011-0854-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041351060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044802002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.113.000528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045087527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.113.000528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045087527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2009.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045727428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046271499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncpcardio0298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046327138", 
          "https://doi.org/10.1038/ncpcardio0298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncpcardio0298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046327138", 
          "https://doi.org/10.1038/ncpcardio0298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046729060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048606837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048606837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.007282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048856689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.007282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048856689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050286623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051314598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052759932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-008-9609-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053686412", 
          "https://doi.org/10.1007/s10439-008-9609-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.914728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.2001.281.3.l529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074864863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2017.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084085242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2017.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084085242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep46618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084972238", 
          "https://doi.org/10.1038/srep46618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090896539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090896539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2018.00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100618046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106890074", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "Recently, time-resolved 3D phase contrast magnetic resonance imaging, which is also called 4D flow MRI or 4D PC-MRI, has been widely utilized to investigate spatial and temporal variations in the hemodynamic characteristics of blood flows. The conventional 4D flow MRI only provides the ensemble-averaged mean flow information but misses flow fluctuation because of turbulence. There have been some new manners for turbulence quantification of the blood flow using 4D flow MRI to acquire the fluctuation intensity of the turbulent flow. Although the previous studies showed that a minimum of six flow encoding is needed to perfectly describe six independent components of the 3 \u00d7 3 symmetric Reynolds stress tensor, the optimum flow encoding scheme for turbulence has not been clearly revealed. In this study, we compared and evaluated the uncertainty of mean velocity and Reynolds stress tensor in 4D flow MRI with various flow encoding schemes. The results showed that six- to fifteen-direction measurements could result 29\u201351% less noise in the velocity field and 34\u201357% less noise in the TKE field. In addition, higher number of flow encoding had less noise in Reynolds stress estimation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-019-00556-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }
    ], 
    "name": "Comparison of turbulent flow measurement schemes for 4D flow MRI", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-019-00556-7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56ed877a3406e3289c34ca9db738c1bed45502510a6eb3eb6cae79f518049a33"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113199919"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-019-00556-7", 
      "https://app.dimensions.ai/details/publication/pub.1113199919"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56155_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-019-00556-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00556-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00556-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00556-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00556-7'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-019-00556-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd46ba71b106f4322b023d4e8eaade5b5
4 schema:citation sg:pub.10.1007/s10439-008-9609-6
5 sg:pub.10.1007/s11517-011-0854-8
6 sg:pub.10.1038/ncpcardio0298
7 sg:pub.10.1038/srep39773
8 sg:pub.10.1038/srep46618
9 sg:pub.10.1186/1532-429x-13-7
10 https://app.dimensions.ai/details/publication/pub.1106890074
11 https://doi.org/10.1002/jmri.1107
12 https://doi.org/10.1002/jmri.1880010404
13 https://doi.org/10.1002/jmri.21475
14 https://doi.org/10.1002/jmri.22856
15 https://doi.org/10.1002/jmri.23632
16 https://doi.org/10.1002/jmri.24578
17 https://doi.org/10.1002/mrm.1116
18 https://doi.org/10.1002/mrm.21022
19 https://doi.org/10.1002/mrm.21109
20 https://doi.org/10.1002/mrm.21774
21 https://doi.org/10.1002/mrm.22353
22 https://doi.org/10.1002/mrm.22383
23 https://doi.org/10.1002/mrm.24390
24 https://doi.org/10.1002/mrm.25612
25 https://doi.org/10.1002/mrm.25772
26 https://doi.org/10.1002/mrm.26853
27 https://doi.org/10.1016/j.jbiomech.2015.07.039
28 https://doi.org/10.1016/j.jbiomech.2017.03.006
29 https://doi.org/10.1016/j.jcmg.2012.07.017
30 https://doi.org/10.1016/j.media.2012.04.003
31 https://doi.org/10.1016/j.media.2015.08.012
32 https://doi.org/10.1016/j.mri.2009.05.004
33 https://doi.org/10.1016/j.mri.2015.11.010
34 https://doi.org/10.1109/msp.2007.914728
35 https://doi.org/10.1152/ajplung.2001.281.3.l529
36 https://doi.org/10.1161/01.atv.5.3.293
37 https://doi.org/10.1161/circimaging.112.973370
38 https://doi.org/10.1161/circimaging.113.000528
39 https://doi.org/10.1161/circulationaha.113.007282
40 https://doi.org/10.1161/strokeaha.107.484766
41 https://doi.org/10.1371/journal.pone.0139025
42 https://doi.org/10.1371/journal.pone.0151540
43 https://doi.org/10.3389/fphys.2018.00036
44 schema:datePublished 2019-04-02
45 schema:datePublishedReg 2019-04-02
46 schema:description Recently, time-resolved 3D phase contrast magnetic resonance imaging, which is also called 4D flow MRI or 4D PC-MRI, has been widely utilized to investigate spatial and temporal variations in the hemodynamic characteristics of blood flows. The conventional 4D flow MRI only provides the ensemble-averaged mean flow information but misses flow fluctuation because of turbulence. There have been some new manners for turbulence quantification of the blood flow using 4D flow MRI to acquire the fluctuation intensity of the turbulent flow. Although the previous studies showed that a minimum of six flow encoding is needed to perfectly describe six independent components of the 3 × 3 symmetric Reynolds stress tensor, the optimum flow encoding scheme for turbulence has not been clearly revealed. In this study, we compared and evaluated the uncertainty of mean velocity and Reynolds stress tensor in 4D flow MRI with various flow encoding schemes. The results showed that six- to fifteen-direction measurements could result 29–51% less noise in the velocity field and 34–57% less noise in the TKE field. In addition, higher number of flow encoding had less noise in Reynolds stress estimation.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1033383
51 schema:name Comparison of turbulent flow measurement schemes for 4D flow MRI
52 schema:pagination 1-13
53 schema:productId N01c98255a2794dcea0debbe48d969645
54 N63bb35a9154f45728a0e0cdd73a59bab
55 Nb529f7e58b7f4534a1967fe0d8181fbb
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113199919
57 https://doi.org/10.1007/s12650-019-00556-7
58 schema:sdDatePublished 2019-04-15T09:10
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nc6b3973209f44059b043a444094a3614
61 schema:url https://link.springer.com/10.1007%2Fs12650-019-00556-7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N01c98255a2794dcea0debbe48d969645 schema:name doi
66 schema:value 10.1007/s12650-019-00556-7
67 rdf:type schema:PropertyValue
68 N0ed8e77d03bc47daa5954054129cd52c schema:affiliation https://www.grid.ac/institutes/grid.412674.2
69 schema:familyName Park
70 schema:givenName Hanwook
71 rdf:type schema:Person
72 N4c0e94bf1ef144d498884817c9da304a schema:affiliation https://www.grid.ac/institutes/grid.412010.6
73 schema:familyName Ha
74 schema:givenName Hoijn
75 rdf:type schema:Person
76 N577f5fdb991a4bbf93156130ccd25e36 rdf:first N0ed8e77d03bc47daa5954054129cd52c
77 rdf:rest rdf:nil
78 N63bb35a9154f45728a0e0cdd73a59bab schema:name readcube_id
79 schema:value 56ed877a3406e3289c34ca9db738c1bed45502510a6eb3eb6cae79f518049a33
80 rdf:type schema:PropertyValue
81 Nb529f7e58b7f4534a1967fe0d8181fbb schema:name dimensions_id
82 schema:value pub.1113199919
83 rdf:type schema:PropertyValue
84 Nc6b3973209f44059b043a444094a3614 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nd46ba71b106f4322b023d4e8eaade5b5 rdf:first N4c0e94bf1ef144d498884817c9da304a
87 rdf:rest N577f5fdb991a4bbf93156130ccd25e36
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
92 schema:name Interdisciplinary Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1033383 schema:issn 1343-8875
95 1875-8975
96 schema:name Journal of Visualization
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s10439-008-9609-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053686412
99 https://doi.org/10.1007/s10439-008-9609-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11517-011-0854-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315927
102 https://doi.org/10.1007/s11517-011-0854-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncpcardio0298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046327138
105 https://doi.org/10.1038/ncpcardio0298
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/srep39773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037535251
108 https://doi.org/10.1038/srep39773
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/srep46618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084972238
111 https://doi.org/10.1038/srep46618
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/1532-429x-13-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000603636
114 https://doi.org/10.1186/1532-429x-13-7
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1106890074 schema:CreativeWork
117 https://doi.org/10.1002/jmri.1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001189607
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jmri.1880010404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005401831
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/jmri.21475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802002
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/jmri.22856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050286623
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/jmri.23632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052759932
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/jmri.24578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038973072
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/mrm.1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046729060
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/mrm.21022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010422622
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/mrm.21109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051314598
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/mrm.21774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034430650
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/mrm.22353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048606837
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/mrm.22383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004544543
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/mrm.24390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029763149
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/mrm.25612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696664
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/mrm.25772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046271499
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/mrm.26853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090896539
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jbiomech.2015.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003289150
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jbiomech.2017.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084085242
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jcmg.2012.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036112789
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.media.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039890283
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.media.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041351060
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.mri.2009.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045727428
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.mri.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035793760
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/msp.2007.914728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422951
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1152/ajplung.2001.281.3.l529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074864863
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1161/01.atv.5.3.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020081887
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1161/circimaging.112.973370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003659065
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1161/circimaging.113.000528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045087527
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1161/circulationaha.113.007282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048856689
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1161/strokeaha.107.484766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004907314
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0139025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003098239
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pone.0151540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005012028
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3389/fphys.2018.00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100618046
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.412010.6 schema:alternateName Kangwon National University
184 schema:name Department of Mechanical and Biomedical Engineering, Kangwon National University, 24341, Chuncheon, South Korea
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.412674.2 schema:alternateName Soonchunhyang University
187 schema:name Department of Medical and Mechatronics Engineering, Soonchunhyang University, 22 Soonchunhyang-Ro, 31538, Asan, Chungnam, South Korea
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...