A survey on visualization approaches for exploring association relationships in graph data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Yi Chen, Zeli Guan, Rong Zhang, Xiaomin Du, Yunhai Wang

ABSTRACT

Exploring relationships in complex datasets is one of the challenges in today’s big data era. The graph-based visualization approach, which integrates the advantages of graph analysis theory and visualization technologies and combines machine and human intelligence, has become an effective means for analyzing various relationships in complex datasets. In this paper, we first introduce a graph-based visual analytics model for associated data. Then, we summarize seven typical visualization methods for associated data according to their layout features, including their node-link diagram, adjacency matrix, hypergraph, flow diagram, graphs with geospatial information, multi-attribute graph, and space-filling diagram and discuss their advantages and disadvantages. We describe current graph simplification and interaction techniques, including graph filtering, node clustering, edge bundling, graph data dimension reduction, and topology-based graph transformation. Finally, we discuss the potential challenges and developmental trends of the research direction. More... »

PAGES

1-15

References to SciGraph publications

  • 2005. Multilevel Compound Tree – Construction Visualization and Interaction in HUMAN-COMPUTER INTERACTION - INTERACT 2005
  • 2012-05. Community detection in Social Media in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2009. An Experimental Study on Distance-Based Graph Drawing in GRAPH DRAWING
  • 2014-12. A survey on information visualization: recent advances and challenges in THE VISUAL COMPUTER
  • 2007. MatLink: Enhanced Matrix Visualization for Analyzing Social Networks in HUMAN-COMPUTER INTERACTION – INTERACT 2007
  • 2018-06. M3: visual exploration of spatial relationships between flight trajectories in JOURNAL OF VISUALIZATION
  • 2008. Visual Analytics: Definition, Process, and Challenges in INFORMATION VISUALIZATION
  • 2002. A Comparison of Algorithms for Maximum Common Subgraph on Randomly Connected Graphs in STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12650-019-00551-y

    DOI

    http://dx.doi.org/10.1007/s12650-019-00551-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113199918


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing Technology and Business University", 
              "id": "https://www.grid.ac/institutes/grid.411615.6", 
              "name": [
                "Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Technology and Business University", 
              "id": "https://www.grid.ac/institutes/grid.411615.6", 
              "name": [
                "Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guan", 
            "givenName": "Zeli", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Technology and Business University", 
              "id": "https://www.grid.ac/institutes/grid.411615.6", 
              "name": [
                "Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Rong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Technology and Business University", 
              "id": "https://www.grid.ac/institutes/grid.411615.6", 
              "name": [
                "Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Xiaomin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong University", 
              "id": "https://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Shandong University, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yunhai", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.knosys.2016.12.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000972499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/spe.4380211102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008993696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-013-0892-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012312812", 
              "https://doi.org/10.1007/s00371-013-0892-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1056018.1056041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013101564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0060159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014256265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/142750.142763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014967725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0146368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016516179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0146368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016516179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0146368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016516179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01450.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016659877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01450.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016659877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74800-7_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017618442", 
              "https://doi.org/10.1007/978-3-540-74800-7_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74800-7_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017618442", 
              "https://doi.org/10.1007/978-3-540-74800-7_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-011-0224-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017664270", 
              "https://doi.org/10.1007/s10618-011-0224-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2470654.2466444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018626175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1242572.1242685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019901872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11555261_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020240226", 
              "https://doi.org/10.1007/11555261_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11555261_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020240226", 
              "https://doi.org/10.1007/11555261_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11555261_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020240226", 
              "https://doi.org/10.1007/11555261_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020482279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70956-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021612250", 
              "https://doi.org/10.1007/978-3-540-70956-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cgf.12872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2851581.2892451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028787185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-70659-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029153321", 
              "https://doi.org/10.1007/3-540-70659-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2939672.2939754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032677678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1168149.1168167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034645059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1168149.1168168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035291567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cgf.12800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038720719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cgf.12791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043135103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2702123.2702446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043281738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2008.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045218543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1743546.1743567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045787277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01687.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046896666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01687.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046896666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00219-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047519716", 
              "https://doi.org/10.1007/978-3-642-00219-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00219-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047519716", 
              "https://doi.org/10.1007/978-3-642-00219-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/959242.959249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047866982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2005.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047954177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2011.01898.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053685212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1473871611424815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053940385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1473871611424815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053940385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/ivs.2009.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057572877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/ivs.2009.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057572877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057573336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057573336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcg.2015.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061392100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2006.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2007.70535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2007.70582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2009.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061813193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2014.2346312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2015.2424889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2015.2467554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2016.2515592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2016.2520921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2016.2598831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2016.2598867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1360/jos182469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065077641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1001.2013.04439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071315454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3025453.3026024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085127823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resconrec.2017.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085570043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cgf.13213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090361266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2017.2743858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091437695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2017.2744898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091437759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2017.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091760954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2005.1532129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093358384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pacificvis.2015.7156357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093852892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.1999.801860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093865684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2005.1532136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093951152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.2011.5767834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094233503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2004.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094407661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2002.1173155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095032175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2000.885091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095143779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbmi.2016.7500271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095284567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iv.2012.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095668059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005670000990106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099546907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12650-017-0471-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100195715", 
              "https://doi.org/10.1007/s12650-017-0471-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1089.2018.16920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100645446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2018.2816219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101684653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2018.2816219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101684653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2018.2816219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101684653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2018.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104348656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2018.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104348656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2018.2865020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106259816"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-02", 
        "datePublishedReg": "2019-04-02", 
        "description": "Exploring relationships in complex datasets is one of the challenges in today\u2019s big data era. The graph-based visualization approach, which integrates the advantages of graph analysis theory and visualization technologies and combines machine and human intelligence, has become an effective means for analyzing various relationships in complex datasets. In this paper, we first introduce a graph-based visual analytics model for associated data. Then, we summarize seven typical visualization methods for associated data according to their layout features, including their node-link diagram, adjacency matrix, hypergraph, flow diagram, graphs with geospatial information, multi-attribute graph, and space-filling diagram and discuss their advantages and disadvantages. We describe current graph simplification and interaction techniques, including graph filtering, node clustering, edge bundling, graph data dimension reduction, and topology-based graph transformation. Finally, we discuss the potential challenges and developmental trends of the research direction. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12650-019-00551-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033383", 
            "issn": [
              "1343-8875", 
              "1875-8975"
            ], 
            "name": "Journal of Visualization", 
            "type": "Periodical"
          }
        ], 
        "name": "A survey on visualization approaches for exploring association relationships in graph data", 
        "pagination": "1-15", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12650-019-00551-y"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bc677be7e6bb86347de807172370071c9c5c2b9cc63432a4af8c5e4ae3b28954"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113199918"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12650-019-00551-y", 
          "https://app.dimensions.ai/details/publication/pub.1113199918"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56154_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12650-019-00551-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00551-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00551-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00551-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-019-00551-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      95 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12650-019-00551-y schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N6390f42004ea4d2ca322200bcab27575
    4 schema:citation sg:pub.10.1007/11555261_67
    5 sg:pub.10.1007/3-540-70659-3_12
    6 sg:pub.10.1007/978-3-540-70956-5_7
    7 sg:pub.10.1007/978-3-540-74800-7_24
    8 sg:pub.10.1007/978-3-642-00219-9_21
    9 sg:pub.10.1007/s00371-013-0892-3
    10 sg:pub.10.1007/s10618-011-0224-z
    11 sg:pub.10.1007/s12650-017-0471-1
    12 https://doi.org/10.1002/spe.4380211102
    13 https://doi.org/10.1016/j.ins.2017.09.022
    14 https://doi.org/10.1016/j.jvlc.2005.10.003
    15 https://doi.org/10.1016/j.jvlc.2018.02.003
    16 https://doi.org/10.1016/j.knosys.2016.12.025
    17 https://doi.org/10.1016/j.patcog.2008.06.008
    18 https://doi.org/10.1016/j.physrep.2009.11.002
    19 https://doi.org/10.1016/j.resconrec.2017.05.002
    20 https://doi.org/10.1057/ivs.2009.29
    21 https://doi.org/10.1057/palgrave.ivs.9500036
    22 https://doi.org/10.1109/cbmi.2016.7500271
    23 https://doi.org/10.1109/icde.2011.5767834
    24 https://doi.org/10.1109/infvis.1999.801860
    25 https://doi.org/10.1109/infvis.2000.885091
    26 https://doi.org/10.1109/infvis.2002.1173155
    27 https://doi.org/10.1109/infvis.2004.1
    28 https://doi.org/10.1109/infvis.2005.1532129
    29 https://doi.org/10.1109/infvis.2005.1532136
    30 https://doi.org/10.1109/iv.2012.15
    31 https://doi.org/10.1109/mcg.2015.115
    32 https://doi.org/10.1109/pacificvis.2015.7156357
    33 https://doi.org/10.1109/tpami.2004.75
    34 https://doi.org/10.1109/tvcg.2006.147
    35 https://doi.org/10.1109/tvcg.2007.70535
    36 https://doi.org/10.1109/tvcg.2007.70582
    37 https://doi.org/10.1109/tvcg.2009.179
    38 https://doi.org/10.1109/tvcg.2014.2346312
    39 https://doi.org/10.1109/tvcg.2015.2424889
    40 https://doi.org/10.1109/tvcg.2015.2467554
    41 https://doi.org/10.1109/tvcg.2016.2515592
    42 https://doi.org/10.1109/tvcg.2016.2520921
    43 https://doi.org/10.1109/tvcg.2016.2598831
    44 https://doi.org/10.1109/tvcg.2016.2598867
    45 https://doi.org/10.1109/tvcg.2017.2743858
    46 https://doi.org/10.1109/tvcg.2017.2744898
    47 https://doi.org/10.1109/tvcg.2018.2816219
    48 https://doi.org/10.1109/tvcg.2018.2865020
    49 https://doi.org/10.1111/cgf.12791
    50 https://doi.org/10.1111/cgf.12800
    51 https://doi.org/10.1111/cgf.12872
    52 https://doi.org/10.1111/cgf.13213
    53 https://doi.org/10.1111/j.1467-8659.2009.01450.x
    54 https://doi.org/10.1111/j.1467-8659.2009.01687.x
    55 https://doi.org/10.1111/j.1467-8659.2011.01898.x
    56 https://doi.org/10.1145/1056018.1056041
    57 https://doi.org/10.1145/1168149.1168167
    58 https://doi.org/10.1145/1168149.1168168
    59 https://doi.org/10.1145/1242572.1242685
    60 https://doi.org/10.1145/142750.142763
    61 https://doi.org/10.1145/1743546.1743567
    62 https://doi.org/10.1145/2470654.2466444
    63 https://doi.org/10.1145/2702123.2702446
    64 https://doi.org/10.1145/2851581.2892451
    65 https://doi.org/10.1145/2939672.2939754
    66 https://doi.org/10.1145/3025453.3026024
    67 https://doi.org/10.1145/959242.959249
    68 https://doi.org/10.1177/1473871611424815
    69 https://doi.org/10.1360/jos182469
    70 https://doi.org/10.1371/journal.pbio.0060159
    71 https://doi.org/10.1371/journal.pone.0146368
    72 https://doi.org/10.3724/sp.j.1001.2013.04439
    73 https://doi.org/10.3724/sp.j.1089.2018.16920
    74 https://doi.org/10.5220/0005670000990106
    75 schema:datePublished 2019-04-02
    76 schema:datePublishedReg 2019-04-02
    77 schema:description Exploring relationships in complex datasets is one of the challenges in today’s big data era. The graph-based visualization approach, which integrates the advantages of graph analysis theory and visualization technologies and combines machine and human intelligence, has become an effective means for analyzing various relationships in complex datasets. In this paper, we first introduce a graph-based visual analytics model for associated data. Then, we summarize seven typical visualization methods for associated data according to their layout features, including their node-link diagram, adjacency matrix, hypergraph, flow diagram, graphs with geospatial information, multi-attribute graph, and space-filling diagram and discuss their advantages and disadvantages. We describe current graph simplification and interaction techniques, including graph filtering, node clustering, edge bundling, graph data dimension reduction, and topology-based graph transformation. Finally, we discuss the potential challenges and developmental trends of the research direction.
    78 schema:genre research_article
    79 schema:inLanguage en
    80 schema:isAccessibleForFree false
    81 schema:isPartOf sg:journal.1033383
    82 schema:name A survey on visualization approaches for exploring association relationships in graph data
    83 schema:pagination 1-15
    84 schema:productId N1469406db72b458aba88b6bd6967535d
    85 N83606938c3c64a69a325d7b545260576
    86 Nb55d6d1e5e6c4ab4bce99d0049b17b0f
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113199918
    88 https://doi.org/10.1007/s12650-019-00551-y
    89 schema:sdDatePublished 2019-04-15T09:09
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N6fa8a56c1c574bacb61aa4967b9f44d5
    92 schema:url https://link.springer.com/10.1007%2Fs12650-019-00551-y
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N1469406db72b458aba88b6bd6967535d schema:name readcube_id
    97 schema:value bc677be7e6bb86347de807172370071c9c5c2b9cc63432a4af8c5e4ae3b28954
    98 rdf:type schema:PropertyValue
    99 N223b0045719e45589e2bc95d79eb33de schema:affiliation https://www.grid.ac/institutes/grid.411615.6
    100 schema:familyName Guan
    101 schema:givenName Zeli
    102 rdf:type schema:Person
    103 N3a97f464305241848c1f8a2baef12332 rdf:first N9c20973350f1460087f2cb136285b3cd
    104 rdf:rest Nef31b9c636cd489998afe9b2e47bffce
    105 N5f26a957296447bfbce7351f573ed812 schema:affiliation https://www.grid.ac/institutes/grid.411615.6
    106 schema:familyName Chen
    107 schema:givenName Yi
    108 rdf:type schema:Person
    109 N6390f42004ea4d2ca322200bcab27575 rdf:first N5f26a957296447bfbce7351f573ed812
    110 rdf:rest Nd0a83d2224f643ce853b33f49a142fde
    111 N69e79f6e5b0f4ef797fd8925e603fb95 rdf:first N9ed00381a682440bbd3875a04c477ca5
    112 rdf:rest N3a97f464305241848c1f8a2baef12332
    113 N6fa8a56c1c574bacb61aa4967b9f44d5 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N83606938c3c64a69a325d7b545260576 schema:name dimensions_id
    116 schema:value pub.1113199918
    117 rdf:type schema:PropertyValue
    118 N9c20973350f1460087f2cb136285b3cd schema:affiliation https://www.grid.ac/institutes/grid.411615.6
    119 schema:familyName Du
    120 schema:givenName Xiaomin
    121 rdf:type schema:Person
    122 N9ed00381a682440bbd3875a04c477ca5 schema:affiliation https://www.grid.ac/institutes/grid.411615.6
    123 schema:familyName Zhang
    124 schema:givenName Rong
    125 rdf:type schema:Person
    126 Nb55d6d1e5e6c4ab4bce99d0049b17b0f schema:name doi
    127 schema:value 10.1007/s12650-019-00551-y
    128 rdf:type schema:PropertyValue
    129 Ncb853e27f69349cfb6174447f75c436a schema:affiliation https://www.grid.ac/institutes/grid.27255.37
    130 schema:familyName Wang
    131 schema:givenName Yunhai
    132 rdf:type schema:Person
    133 Nd0a83d2224f643ce853b33f49a142fde rdf:first N223b0045719e45589e2bc95d79eb33de
    134 rdf:rest N69e79f6e5b0f4ef797fd8925e603fb95
    135 Nef31b9c636cd489998afe9b2e47bffce rdf:first Ncb853e27f69349cfb6174447f75c436a
    136 rdf:rest rdf:nil
    137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Information and Computing Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Information Systems
    142 rdf:type schema:DefinedTerm
    143 sg:journal.1033383 schema:issn 1343-8875
    144 1875-8975
    145 schema:name Journal of Visualization
    146 rdf:type schema:Periodical
    147 sg:pub.10.1007/11555261_67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240226
    148 https://doi.org/10.1007/11555261_67
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/3-540-70659-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029153321
    151 https://doi.org/10.1007/3-540-70659-3_12
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-540-70956-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021612250
    154 https://doi.org/10.1007/978-3-540-70956-5_7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-540-74800-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017618442
    157 https://doi.org/10.1007/978-3-540-74800-7_24
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-642-00219-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047519716
    160 https://doi.org/10.1007/978-3-642-00219-9_21
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00371-013-0892-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012312812
    163 https://doi.org/10.1007/s00371-013-0892-3
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10618-011-0224-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017664270
    166 https://doi.org/10.1007/s10618-011-0224-z
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s12650-017-0471-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100195715
    169 https://doi.org/10.1007/s12650-017-0471-1
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/spe.4380211102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008993696
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.ins.2017.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091760954
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.jvlc.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954177
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.jvlc.2018.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104348656
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.knosys.2016.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972499
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.patcog.2008.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045218543
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.resconrec.2017.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085570043
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1057/ivs.2009.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057572877
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1057/palgrave.ivs.9500036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057573336
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/cbmi.2016.7500271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095284567
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/icde.2011.5767834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094233503
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1109/infvis.1999.801860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093865684
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1109/infvis.2000.885091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095143779
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1109/infvis.2002.1173155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095032175
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1109/infvis.2004.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094407661
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1109/infvis.2005.1532129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093358384
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1109/infvis.2005.1532136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093951152
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/iv.2012.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095668059
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/mcg.2015.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392100
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/pacificvis.2015.7156357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093852892
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/tpami.2004.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742753
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/tvcg.2006.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812612
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/tvcg.2007.70535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812871
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/tvcg.2007.70582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812911
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/tvcg.2009.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813193
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/tvcg.2014.2346312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814268
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1109/tvcg.2015.2424889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814450
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/tvcg.2015.2467554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814557
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/tvcg.2016.2515592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814664
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1109/tvcg.2016.2520921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814686
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1109/tvcg.2016.2598831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814814
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1109/tvcg.2016.2598867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814819
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1109/tvcg.2017.2743858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091437695
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1109/tvcg.2017.2744898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091437759
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1109/tvcg.2018.2816219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101684653
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1109/tvcg.2018.2865020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106259816
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1111/cgf.12791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043135103
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1111/cgf.12800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038720719
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/cgf.12872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044227
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1111/cgf.13213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090361266
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1111/j.1467-8659.2009.01450.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016659877
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1111/j.1467-8659.2009.01687.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046896666
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1111/j.1467-8659.2011.01898.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053685212
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1145/1056018.1056041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013101564
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1145/1168149.1168167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034645059
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1145/1168149.1168168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035291567
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1145/1242572.1242685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901872
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1145/142750.142763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014967725
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1145/1743546.1743567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787277
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1145/2470654.2466444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018626175
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1145/2702123.2702446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043281738
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1145/2851581.2892451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787185
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1145/2939672.2939754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032677678
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1145/3025453.3026024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085127823
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1145/959242.959249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047866982
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1177/1473871611424815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053940385
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1360/jos182469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065077641
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1371/journal.pbio.0060159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014256265
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1371/journal.pone.0146368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016516179
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.3724/sp.j.1001.2013.04439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071315454
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.3724/sp.j.1089.2018.16920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100645446
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.5220/0005670000990106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099546907
    296 rdf:type schema:CreativeWork
    297 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
    298 schema:name Shandong University, Jinan, China
    299 rdf:type schema:Organization
    300 https://www.grid.ac/institutes/grid.411615.6 schema:alternateName Beijing Technology and Business University
    301 schema:name Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...