Breakup of elliptical liquid jets in gaseous crossflows at low Weber numbers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

M. Jadidi, V. Sreekumar, A. Dolatabadi

ABSTRACT

Breakup of circular and elliptical liquid jets in subsonic gaseous crossflows is experimentally studied using shadowgraph technique. The experiments are performed at gaseous Weber numbers less than 15, the liquid-to-gas momentum flux ratio between 50 and 320, and the orifice aspect ratio between 0.22 and 4.47. It is found that in addition to the momentum flux ratio, the orifice aspect ratio can change the liquid penetration height significantly. For a fixed momentum flux ratio, the penetration of elliptical jets is less than that of circular jet. Moreover, for a given momentum flux ratio and Weber number, the column breakup location of elliptical jets is earlier than that of circular jet. Empirical correlations for the penetration height as well as the column breakup location of circular and elliptical jets are developed in this study. More... »

PAGES

259-271

References to SciGraph publications

Journal

TITLE

Journal of Visualization

ISSUE

2

VOLUME

22

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-0537-8

DOI

http://dx.doi.org/10.1007/s12650-018-0537-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110098970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Concordia University", 
          "id": "https://www.grid.ac/institutes/grid.410319.e", 
          "name": [
            "Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, H3G 1M8, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jadidi", 
        "givenName": "M.", 
        "id": "sg:person.07410232171.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410232171.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Concordia University", 
          "id": "https://www.grid.ac/institutes/grid.410319.e", 
          "name": [
            "Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, H3G 1M8, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sreekumar", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Concordia University", 
          "id": "https://www.grid.ac/institutes/grid.410319.e", 
          "name": [
            "Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, H3G 1M8, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolatabadi", 
        "givenName": "A.", 
        "id": "sg:person.01073340532.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073340532.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000844424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.19397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.b34011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007999177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j051451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009617450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2012-2817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009937555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/26045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011921374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.3749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016962534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1756-8277.7.4.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017331425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1756-8277.7.4.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017331425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.07.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.5151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020395231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.b34743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024010570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1998-716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027109072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j052509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027578699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/coatings5040576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028050699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4959290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028083020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030329087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-014-1666-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036336574", 
          "https://doi.org/10.1007/s00348-014-1666-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046316651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-013-0030-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047810668", 
          "https://doi.org/10.1007/s11666-013-0030-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12650-015-0328-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049272676", 
          "https://doi.org/10.1007/s12650-015-0328-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2007.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050454111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095001753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053844096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4000148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4000148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4002273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062142623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/atomizspr.2012004192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068128610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-017-9806-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024886", 
          "https://doi.org/10.1007/s10494-017-9806-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-017-9806-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024886", 
          "https://doi.org/10.1007/s10494-017-9806-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/atomizspr.2017016036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084354882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4994978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092730815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099671544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2018.04.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103687702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4040373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105740387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Breakup of circular and elliptical liquid jets in subsonic gaseous crossflows is experimentally studied using shadowgraph technique. The experiments are performed at gaseous Weber numbers less than 15, the liquid-to-gas momentum flux ratio between 50 and 320, and the orifice aspect ratio between 0.22 and 4.47. It is found that in addition to the momentum flux ratio, the orifice aspect ratio can change the liquid penetration height significantly. For a fixed momentum flux ratio, the penetration of elliptical jets is less than that of circular jet. Moreover, for a given momentum flux ratio and Weber number, the column breakup location of elliptical jets is earlier than that of circular jet. Empirical correlations for the penetration height as well as the column breakup location of circular and elliptical jets are developed in this study. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-0537-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Breakup of elliptical liquid jets in gaseous crossflows at low Weber numbers", 
    "pagination": "259-271", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cbacfe9d5e217778097f7da4094cd9fc05e64940c41d5870ff369c92ec6c50f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-0537-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110098970"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-0537-8", 
      "https://app.dimensions.ai/details/publication/pub.1110098970"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-0537-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0537-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0537-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0537-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0537-8'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-0537-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncde5bab50e2f41b1b02abf25ff72aaa8
4 schema:citation sg:pub.10.1007/s00348-014-1666-z
5 sg:pub.10.1007/s10494-017-9806-1
6 sg:pub.10.1007/s11666-013-0030-9
7 sg:pub.10.1007/s12650-015-0328-4
8 https://doi.org/10.1016/j.expthermflusci.2017.12.012
9 https://doi.org/10.1016/j.fuel.2018.04.156
10 https://doi.org/10.1016/j.ijmultiphaseflow.2007.07.005
11 https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
12 https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001
13 https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015
14 https://doi.org/10.1016/j.matdes.2016.07.145
15 https://doi.org/10.1017/s0022112095001753
16 https://doi.org/10.1063/1.4959290
17 https://doi.org/10.1063/1.4994978
18 https://doi.org/10.1115/1.4000148
19 https://doi.org/10.1115/1.4002273
20 https://doi.org/10.1115/1.4040373
21 https://doi.org/10.1260/1756-8277.7.4.283
22 https://doi.org/10.1615/atomizspr.2012004192
23 https://doi.org/10.1615/atomizspr.2017016036
24 https://doi.org/10.2514/1.19397
25 https://doi.org/10.2514/1.3749
26 https://doi.org/10.2514/1.b34011
27 https://doi.org/10.2514/1.b34743
28 https://doi.org/10.2514/1.j051451
29 https://doi.org/10.2514/1.j052509
30 https://doi.org/10.2514/2.5151
31 https://doi.org/10.2514/6.1998-716
32 https://doi.org/10.2514/6.2012-2817
33 https://doi.org/10.3390/coatings5040576
34 https://doi.org/10.5772/26045
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Breakup of circular and elliptical liquid jets in subsonic gaseous crossflows is experimentally studied using shadowgraph technique. The experiments are performed at gaseous Weber numbers less than 15, the liquid-to-gas momentum flux ratio between 50 and 320, and the orifice aspect ratio between 0.22 and 4.47. It is found that in addition to the momentum flux ratio, the orifice aspect ratio can change the liquid penetration height significantly. For a fixed momentum flux ratio, the penetration of elliptical jets is less than that of circular jet. Moreover, for a given momentum flux ratio and Weber number, the column breakup location of elliptical jets is earlier than that of circular jet. Empirical correlations for the penetration height as well as the column breakup location of circular and elliptical jets are developed in this study.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N007d7216e58941d185351fac2b598597
42 Nfbf9fe789cc845589f05e751da002992
43 sg:journal.1033383
44 schema:name Breakup of elliptical liquid jets in gaseous crossflows at low Weber numbers
45 schema:pagination 259-271
46 schema:productId N126aef7a745a4b028f447b1163a6d8cd
47 N52350e8d568b4fabb4211844e2b88d0e
48 N5e7cc3de417449939249a74363004ebf
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110098970
50 https://doi.org/10.1007/s12650-018-0537-8
51 schema:sdDatePublished 2019-04-11T13:25
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nbd05127cadf845b5bfa65ac032b2790d
54 schema:url https://link.springer.com/10.1007%2Fs12650-018-0537-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N007d7216e58941d185351fac2b598597 schema:volumeNumber 22
59 rdf:type schema:PublicationVolume
60 N126aef7a745a4b028f447b1163a6d8cd schema:name readcube_id
61 schema:value 5cbacfe9d5e217778097f7da4094cd9fc05e64940c41d5870ff369c92ec6c50f
62 rdf:type schema:PropertyValue
63 N52350e8d568b4fabb4211844e2b88d0e schema:name dimensions_id
64 schema:value pub.1110098970
65 rdf:type schema:PropertyValue
66 N5e7cc3de417449939249a74363004ebf schema:name doi
67 schema:value 10.1007/s12650-018-0537-8
68 rdf:type schema:PropertyValue
69 N9d5d9a183c834466a8821b4d34017c36 rdf:first Nf21cd4f6d31f414ebe49286aa4dffa3e
70 rdf:rest Ne4509f8f0571499b9e80eec24333a657
71 Nbd05127cadf845b5bfa65ac032b2790d schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ncde5bab50e2f41b1b02abf25ff72aaa8 rdf:first sg:person.07410232171.22
74 rdf:rest N9d5d9a183c834466a8821b4d34017c36
75 Ne4509f8f0571499b9e80eec24333a657 rdf:first sg:person.01073340532.31
76 rdf:rest rdf:nil
77 Nf21cd4f6d31f414ebe49286aa4dffa3e schema:affiliation https://www.grid.ac/institutes/grid.410319.e
78 schema:familyName Sreekumar
79 schema:givenName V.
80 rdf:type schema:Person
81 Nfbf9fe789cc845589f05e751da002992 schema:issueNumber 2
82 rdf:type schema:PublicationIssue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1033383 schema:issn 1343-8875
90 1875-8975
91 schema:name Journal of Visualization
92 rdf:type schema:Periodical
93 sg:person.01073340532.31 schema:affiliation https://www.grid.ac/institutes/grid.410319.e
94 schema:familyName Dolatabadi
95 schema:givenName A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073340532.31
97 rdf:type schema:Person
98 sg:person.07410232171.22 schema:affiliation https://www.grid.ac/institutes/grid.410319.e
99 schema:familyName Jadidi
100 schema:givenName M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410232171.22
102 rdf:type schema:Person
103 sg:pub.10.1007/s00348-014-1666-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036336574
104 https://doi.org/10.1007/s00348-014-1666-z
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10494-017-9806-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024886
107 https://doi.org/10.1007/s10494-017-9806-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11666-013-0030-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047810668
110 https://doi.org/10.1007/s11666-013-0030-9
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12650-015-0328-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049272676
113 https://doi.org/10.1007/s12650-015-0328-4
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.expthermflusci.2017.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099671544
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.fuel.2018.04.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103687702
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmultiphaseflow.2007.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050454111
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316651
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030329087
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000844424
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.matdes.2016.07.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724419
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/s0022112095001753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053844096
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.4959290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028083020
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4994978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092730815
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1115/1.4000148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062140513
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1115/1.4002273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062142623
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1115/1.4040373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105740387
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1260/1756-8277.7.4.283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017331425
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1615/atomizspr.2012004192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068128610
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1615/atomizspr.2017016036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084354882
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2514/1.19397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001152043
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2514/1.3749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016962534
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2514/1.b34011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007999177
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2514/1.b34743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010570
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2514/1.j051451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009617450
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2514/1.j052509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027578699
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2514/2.5151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020395231
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2514/6.1998-716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027109072
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2514/6.2012-2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009937555
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3390/coatings5040576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028050699
166 rdf:type schema:CreativeWork
167 https://doi.org/10.5772/26045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011921374
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.410319.e schema:alternateName Concordia University
170 schema:name Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, H3G 1M8, Montreal, QC, Canada
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...