Realistic fluid representation by anisotropic particle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jung Lee, Jong-Hyun Kim, Ho-Young Lee, Sun-Jeong Kim

ABSTRACT

This paper presents a novel method for tracking multiphase fluid surfaces more accurately using the particle level-set (PLS) method with anisotropic instead of spherical particles. We create an anisotropic particle by considering the distribution of particles. To construct the anisotropic particles, we use the weighted version of principal component analysis and adopt the distribution of particles from the directional derivatives. This represents the fluid surface accurately, but the search for neighbor particles requires to calculate singular value decomposition with a high computational cost. Therefore, we devised a new method that uses directional derivatives to generate the anisotropic particles. This reduces the computational costs significantly but still allows the fluid interface to be tracked more accurately. Compared to the PLS method, our approach provides more detailed surfaces, corrects numerical dissipation, and preserves the volume of the fluid. Furthermore, we present particle-based fluid simulations with a surface reconstruction that uses anisotropic particles. More... »

PAGES

313-320

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-0535-x

DOI

http://dx.doi.org/10.1007/s12650-018-0535-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110101725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hallym University", 
          "id": "https://www.grid.ac/institutes/grid.256753.0", 
          "name": [
            "Hallym University, 1303 Engineering Building, 1 Hallymdaehak-gil, 24252, Chuncheon, Gangwon-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jung", 
        "id": "sg:person.015540615221.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015540615221.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangnam University", 
          "id": "https://www.grid.ac/institutes/grid.444138.e", 
          "name": [
            "Kangnam University, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jong-Hyun", 
        "id": "sg:person.010337362703.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337362703.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TENELEVEN Co., Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ho-Young", 
        "id": "sg:person.010267565155.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010267565155.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University", 
          "id": "https://www.grid.ac/institutes/grid.256753.0", 
          "name": [
            "Hallym University, 1303 Engineering Building, 1 Hallymdaehak-gil, 24252, Chuncheon, Gangwon-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sun-Jeong", 
        "id": "sg:person.010657627105.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657627105.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2019406.2019408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000646848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383259.383261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1507149.1507164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021383231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12650-011-0092-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022217723", 
          "https://doi.org/10.1007/s12650-011-0092-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2009.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023937236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-012-0697-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027537860", 
          "https://doi.org/10.1007/s00371-012-0697-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1275808.1276499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033247634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1882261.1866198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037377489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00193-005-0002-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045843143", 
          "https://doi.org/10.1007/s00193-005-0002-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00193-005-0002-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045843143", 
          "https://doi.org/10.1007/s00193-005-0002-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2004.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046200564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-009-0339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048528775", 
          "https://doi.org/10.1007/s00371-009-0339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-009-0339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048528775", 
          "https://doi.org/10.1007/s00371-009-0339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-009-0339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048528775", 
          "https://doi.org/10.1007/s00371-009-0339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1073368.1073402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049611806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2008.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2012.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1015706.1015745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063148843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1276377.1276437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063153840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/566654.566645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063171382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada479067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091559369"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "This paper presents a novel method for tracking multiphase fluid surfaces more accurately using the particle level-set (PLS) method with anisotropic instead of spherical particles. We create an anisotropic particle by considering the distribution of particles. To construct the anisotropic particles, we use the weighted version of principal component analysis and adopt the distribution of particles from the directional derivatives. This represents the fluid surface accurately, but the search for neighbor particles requires to calculate singular value decomposition with a high computational cost. Therefore, we devised a new method that uses directional derivatives to generate the anisotropic particles. This reduces the computational costs significantly but still allows the fluid interface to be tracked more accurately. Compared to the PLS method, our approach provides more detailed surfaces, corrects numerical dissipation, and preserves the volume of the fluid. Furthermore, we present particle-based fluid simulations with a surface reconstruction that uses anisotropic particles. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-0535-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Realistic fluid representation by anisotropic particle", 
    "pagination": "313-320", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b143fd2baea6b73c3f8fefa916e5e016102bedaa4e4c467cf54ff337ad3256d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-0535-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110101725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-0535-x", 
      "https://app.dimensions.ai/details/publication/pub.1110101725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-0535-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0535-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0535-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0535-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0535-x'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-0535-x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N2342923d334b446382529947c455d31c
4 schema:citation sg:pub.10.1007/s00193-005-0002-1
5 sg:pub.10.1007/s00371-009-0339-z
6 sg:pub.10.1007/s00371-012-0697-9
7 sg:pub.10.1007/s12650-011-0092-z
8 https://doi.org/10.1016/j.compstruc.2004.04.024
9 https://doi.org/10.1016/j.jcp.2009.10.034
10 https://doi.org/10.1109/tvcg.2008.37
11 https://doi.org/10.1109/tvcg.2012.87
12 https://doi.org/10.1145/1015706.1015745
13 https://doi.org/10.1145/1073368.1073402
14 https://doi.org/10.1145/1275808.1276499
15 https://doi.org/10.1145/1276377.1276437
16 https://doi.org/10.1145/1507149.1507164
17 https://doi.org/10.1145/1882261.1866198
18 https://doi.org/10.1145/2019406.2019408
19 https://doi.org/10.1145/383259.383261
20 https://doi.org/10.1145/566654.566645
21 https://doi.org/10.21236/ada479067
22 schema:datePublished 2019-04
23 schema:datePublishedReg 2019-04-01
24 schema:description This paper presents a novel method for tracking multiphase fluid surfaces more accurately using the particle level-set (PLS) method with anisotropic instead of spherical particles. We create an anisotropic particle by considering the distribution of particles. To construct the anisotropic particles, we use the weighted version of principal component analysis and adopt the distribution of particles from the directional derivatives. This represents the fluid surface accurately, but the search for neighbor particles requires to calculate singular value decomposition with a high computational cost. Therefore, we devised a new method that uses directional derivatives to generate the anisotropic particles. This reduces the computational costs significantly but still allows the fluid interface to be tracked more accurately. Compared to the PLS method, our approach provides more detailed surfaces, corrects numerical dissipation, and preserves the volume of the fluid. Furthermore, we present particle-based fluid simulations with a surface reconstruction that uses anisotropic particles.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N67bcff93e08a45a5874e9433a72cdfad
29 N9b554f833ee54744a8fa172f42861d55
30 sg:journal.1033383
31 schema:name Realistic fluid representation by anisotropic particle
32 schema:pagination 313-320
33 schema:productId N94a9f1d5c0574e5ab8a850a4a7eec30f
34 Necfe4e7ccdd64b89a1e713f282edaaa3
35 Ned0120af79c2448597d70bdcfb02563d
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110101725
37 https://doi.org/10.1007/s12650-018-0535-x
38 schema:sdDatePublished 2019-04-11T13:25
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N3ea00654d1044e85bc44dc1763cd5c5a
41 schema:url https://link.springer.com/10.1007%2Fs12650-018-0535-x
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N2342923d334b446382529947c455d31c rdf:first sg:person.015540615221.29
46 rdf:rest N6b42f4fbc90a49e6a654155383ac7d3c
47 N30fb388083ec46c3808f8f80f3588b5e rdf:first sg:person.010267565155.29
48 rdf:rest N7d9496e8a857431e94de52e36f729cfe
49 N3ea00654d1044e85bc44dc1763cd5c5a schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N64c7aa6fc77a46e68f381e6eaf84ec04 schema:name TENELEVEN Co., Seoul, Republic of Korea
52 rdf:type schema:Organization
53 N67bcff93e08a45a5874e9433a72cdfad schema:issueNumber 2
54 rdf:type schema:PublicationIssue
55 N6b42f4fbc90a49e6a654155383ac7d3c rdf:first sg:person.010337362703.60
56 rdf:rest N30fb388083ec46c3808f8f80f3588b5e
57 N7d9496e8a857431e94de52e36f729cfe rdf:first sg:person.010657627105.83
58 rdf:rest rdf:nil
59 N94a9f1d5c0574e5ab8a850a4a7eec30f schema:name readcube_id
60 schema:value b143fd2baea6b73c3f8fefa916e5e016102bedaa4e4c467cf54ff337ad3256d1
61 rdf:type schema:PropertyValue
62 N9b554f833ee54744a8fa172f42861d55 schema:volumeNumber 22
63 rdf:type schema:PublicationVolume
64 Necfe4e7ccdd64b89a1e713f282edaaa3 schema:name doi
65 schema:value 10.1007/s12650-018-0535-x
66 rdf:type schema:PropertyValue
67 Ned0120af79c2448597d70bdcfb02563d schema:name dimensions_id
68 schema:value pub.1110101725
69 rdf:type schema:PropertyValue
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
74 schema:name Interdisciplinary Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1033383 schema:issn 1343-8875
77 1875-8975
78 schema:name Journal of Visualization
79 rdf:type schema:Periodical
80 sg:person.010267565155.29 schema:affiliation N64c7aa6fc77a46e68f381e6eaf84ec04
81 schema:familyName Lee
82 schema:givenName Ho-Young
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010267565155.29
84 rdf:type schema:Person
85 sg:person.010337362703.60 schema:affiliation https://www.grid.ac/institutes/grid.444138.e
86 schema:familyName Kim
87 schema:givenName Jong-Hyun
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337362703.60
89 rdf:type schema:Person
90 sg:person.010657627105.83 schema:affiliation https://www.grid.ac/institutes/grid.256753.0
91 schema:familyName Kim
92 schema:givenName Sun-Jeong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657627105.83
94 rdf:type schema:Person
95 sg:person.015540615221.29 schema:affiliation https://www.grid.ac/institutes/grid.256753.0
96 schema:familyName Lee
97 schema:givenName Jung
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015540615221.29
99 rdf:type schema:Person
100 sg:pub.10.1007/s00193-005-0002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045843143
101 https://doi.org/10.1007/s00193-005-0002-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00371-009-0339-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048528775
104 https://doi.org/10.1007/s00371-009-0339-z
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00371-012-0697-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027537860
107 https://doi.org/10.1007/s00371-012-0697-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s12650-011-0092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022217723
110 https://doi.org/10.1007/s12650-011-0092-z
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.compstruc.2004.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200564
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jcp.2009.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023937236
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tvcg.2008.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813070
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tvcg.2012.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813957
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1015706.1015745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063148843
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1073368.1073402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049611806
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/1275808.1276499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033247634
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/1276377.1276437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063153840
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1507149.1507164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021383231
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/1882261.1866198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037377489
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/2019406.2019408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646848
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/383259.383261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776525
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/566654.566645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063171382
137 rdf:type schema:CreativeWork
138 https://doi.org/10.21236/ada479067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091559369
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.256753.0 schema:alternateName Hallym University
141 schema:name Hallym University, 1303 Engineering Building, 1 Hallymdaehak-gil, 24252, Chuncheon, Gangwon-do, Republic of Korea
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.444138.e schema:alternateName Kangnam University
144 schema:name Kangnam University, Yongin, Republic of Korea
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...