Helmholtz–Hodge decomposition-based 2D and 3D ocean surface current visualization for mesoscale eddy detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Cuicui Zhang, Hao Wei, Chongke Bi, Zhilei Liu

ABSTRACT

Ocean surface current (or ocean flow) visualization plays a significant role in the understanding of dynamical processes of ocean. It has been a hot research topic in both computer science and oceanography. Ocean surface current is a turbulent flow field mixing of multi-scale ocean dynamics such as large-scale ocean circulations (100km∼), mesoscale eddies (10–100km), submesoscale processes (1–10km). Mesoscale eddies, which are strong but short-life movement relative to the large-scale ocean circulations, have great importance on the transportation of ocean water masses, momentum and energy. However, their detection and recognition, which are treated as the foundation of exploring their dynamical mechanisms, is still a challenging issue. For one thing, in the mixed ocean flow field, different ocean flows depended and influence with each other making existing methods difficult to identify among them. For another, mesoscale eddies are active signals on the ocean. They may change their forms and velocities at any time. This challenges existing works to deal with their boundary ambiguity and unremitting transitions. To solve these problems, this paper proposes a novel 2D and 3D ocean surface current visualization approach based on an amended Helmholtz–Hodge decomposition (HHD), which can be widely used for mesoscale eddy detection. In our method, HHD decomposes each mixed ocean flow field to two components: curl component and divergence component. Different ocean flows can be represented by these two components independently. In addition, to improve the performance of eddy identification and to reveal the 3D structure of ocean flows simultaneously, HHD transforms the 2D ocean flow field to 3D potential surfaces. Finally, comprehensive experiments are performed on both global and local ocean flow field (Black Sea and Mediterranean Sea) calculated from satellite maps of sea level anomaly to verify our method. Experimental results demonstrate the good effectiveness of our method. More... »

PAGES

231-243

Journal

TITLE

Journal of Visualization

ISSUE

2

VOLUME

22

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-0534-y

DOI

http://dx.doi.org/10.1007/s12650-018-0534-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111313349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Marine Science and Technology, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Cuicui", 
        "id": "sg:person.07700725210.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700725210.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Marine Science and Technology, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Hao", 
        "id": "sg:person.010557576601.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557576601.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Computer Software, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Chongke", 
        "id": "sg:person.011424443565.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424443565.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "College of Intelligence and Computing, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhilei", 
        "id": "sg:person.014231075645.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231075645.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1201775.882290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005372769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrc.20155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007659543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1252418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008964379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-011-0035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037520", 
          "https://doi.org/10.1007/s10872-011-0035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-011-0035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037520", 
          "https://doi.org/10.1007/s10872-011-0035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-011-0035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037520", 
          "https://doi.org/10.1007/s10872-011-0035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jtecho725.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012316573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-16817-3_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012552874", 
          "https://doi.org/10.1007/978-3-319-16817-3_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2197/ipsjtcva.7.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013596840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.643629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022162931", 
          "https://doi.org/10.1038/srep24349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pocean.2011.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024090871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024700951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014jc010176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028090835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2015.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029977915", 
          "https://doi.org/10.1038/sdata.2015.28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(2003)20<772:iomefa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043234703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016jc012376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045814047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jc005657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046262220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jc005657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046262220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2197/ipsjtcva.5.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047486213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/os-7-317-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047575302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2280494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2009.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2011.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2012.316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2013.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2013.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jflowvisimageproc.2017019896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084354991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-017-1741-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085384749", 
          "https://doi.org/10.1007/s11390-017-1741-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-017-1741-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085384749", 
          "https://doi.org/10.1007/s11390-017-1741-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jctn.2016.6062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085665674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jphot.2017.2766881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092430659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsdm.2015.7298038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093226362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jphot.2017.2784958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099878470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2825106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103273887"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Ocean surface current (or ocean flow) visualization plays a significant role in the understanding of dynamical processes of ocean. It has been a hot research topic in both computer science and oceanography. Ocean surface current is a turbulent flow field mixing of multi-scale ocean dynamics such as large-scale ocean circulations (100km\u223c), mesoscale eddies (10\u2013100km), submesoscale processes (1\u201310km). Mesoscale eddies, which are strong but short-life movement relative to the large-scale ocean circulations, have great importance on the transportation of ocean water masses, momentum and energy. However, their detection and recognition, which are treated as the foundation of exploring their dynamical mechanisms, is still a challenging issue. For one thing, in the mixed ocean flow field, different ocean flows depended and influence with each other making existing methods difficult to identify among them. For another, mesoscale eddies are active signals on the ocean. They may change their forms and velocities at any time. This challenges existing works to deal with their boundary ambiguity and unremitting transitions. To solve these problems, this paper proposes a novel 2D and 3D ocean surface current visualization approach based on an amended Helmholtz\u2013Hodge decomposition (HHD), which can be widely used for mesoscale eddy detection. In our method, HHD decomposes each mixed ocean flow field to two components: curl component and divergence component. Different ocean flows can be represented by these two components independently. In addition, to improve the performance of eddy identification and to reveal the 3D structure of ocean flows simultaneously, HHD transforms the 2D ocean flow field to 3D potential surfaces. Finally, comprehensive experiments are performed on both global and local ocean flow field (Black Sea and Mediterranean Sea) calculated from satellite maps of sea level anomaly to verify our method. Experimental results demonstrate the good effectiveness of our method. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-0534-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Helmholtz\u2013Hodge decomposition-based 2D and 3D ocean surface current visualization for mesoscale eddy detection", 
    "pagination": "231-243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db7880a770acc79687e955fb568f92224973df27bf8360a5d2889b67fb7c075f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-0534-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111313349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-0534-y", 
      "https://app.dimensions.ai/details/publication/pub.1111313349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68973_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-0534-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0534-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0534-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0534-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0534-y'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-0534-y schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N8ce14c4f31fb498c805aa3a284a54f77
4 schema:citation sg:pub.10.1007/978-3-319-16817-3_23
5 sg:pub.10.1007/s10872-011-0035-2
6 sg:pub.10.1007/s11390-017-1741-z
7 sg:pub.10.1038/sdata.2015.28
8 sg:pub.10.1038/srep24349
9 https://doi.org/10.1002/2014jc010176
10 https://doi.org/10.1002/2016jc012376
11 https://doi.org/10.1002/jgrc.20155
12 https://doi.org/10.1016/j.pocean.2011.01.002
13 https://doi.org/10.1016/s0097-8493(00)00029-7
14 https://doi.org/10.1029/2009jc005657
15 https://doi.org/10.1109/access.2018.2825106
16 https://doi.org/10.1109/icsdm.2015.7298038
17 https://doi.org/10.1109/jphot.2017.2766881
18 https://doi.org/10.1109/jphot.2017.2784958
19 https://doi.org/10.1109/tgrs.2013.2280494
20 https://doi.org/10.1109/tvcg.2009.61
21 https://doi.org/10.1109/tvcg.2011.162
22 https://doi.org/10.1109/tvcg.2012.316
23 https://doi.org/10.1109/tvcg.2013.100
24 https://doi.org/10.1109/tvcg.2013.73
25 https://doi.org/10.1117/12.643629
26 https://doi.org/10.1126/science.1252418
27 https://doi.org/10.1145/1201775.882290
28 https://doi.org/10.1166/jctn.2016.6062
29 https://doi.org/10.1175/1520-0426(2003)20<772:iomefa>2.0.co;2
30 https://doi.org/10.1175/2009jtecho725.1
31 https://doi.org/10.1615/jflowvisimageproc.2017019896
32 https://doi.org/10.2197/ipsjtcva.5.55
33 https://doi.org/10.2197/ipsjtcva.7.163
34 https://doi.org/10.5194/os-7-317-2011
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Ocean surface current (or ocean flow) visualization plays a significant role in the understanding of dynamical processes of ocean. It has been a hot research topic in both computer science and oceanography. Ocean surface current is a turbulent flow field mixing of multi-scale ocean dynamics such as large-scale ocean circulations (100km∼), mesoscale eddies (10–100km), submesoscale processes (1–10km). Mesoscale eddies, which are strong but short-life movement relative to the large-scale ocean circulations, have great importance on the transportation of ocean water masses, momentum and energy. However, their detection and recognition, which are treated as the foundation of exploring their dynamical mechanisms, is still a challenging issue. For one thing, in the mixed ocean flow field, different ocean flows depended and influence with each other making existing methods difficult to identify among them. For another, mesoscale eddies are active signals on the ocean. They may change their forms and velocities at any time. This challenges existing works to deal with their boundary ambiguity and unremitting transitions. To solve these problems, this paper proposes a novel 2D and 3D ocean surface current visualization approach based on an amended Helmholtz–Hodge decomposition (HHD), which can be widely used for mesoscale eddy detection. In our method, HHD decomposes each mixed ocean flow field to two components: curl component and divergence component. Different ocean flows can be represented by these two components independently. In addition, to improve the performance of eddy identification and to reveal the 3D structure of ocean flows simultaneously, HHD transforms the 2D ocean flow field to 3D potential surfaces. Finally, comprehensive experiments are performed on both global and local ocean flow field (Black Sea and Mediterranean Sea) calculated from satellite maps of sea level anomaly to verify our method. Experimental results demonstrate the good effectiveness of our method.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N95809bee66d64867aaf79fff5cfad699
42 Nb579c0e680b5473ba44b3d7cb6e74f46
43 sg:journal.1033383
44 schema:name Helmholtz–Hodge decomposition-based 2D and 3D ocean surface current visualization for mesoscale eddy detection
45 schema:pagination 231-243
46 schema:productId N3a06e55b27744f039d4e4545066dfd85
47 N941196d3e42f43bcb5c69bb36b5a87f8
48 Nd5491a5284844915a8142ba9945e9b5a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111313349
50 https://doi.org/10.1007/s12650-018-0534-y
51 schema:sdDatePublished 2019-04-11T13:25
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N6eb5fcc21b7945228a45488baba6e42d
54 schema:url https://link.springer.com/10.1007%2Fs12650-018-0534-y
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N3a06e55b27744f039d4e4545066dfd85 schema:name readcube_id
59 schema:value db7880a770acc79687e955fb568f92224973df27bf8360a5d2889b67fb7c075f
60 rdf:type schema:PropertyValue
61 N5fe1ac41985c40859e9083c303f77e72 rdf:first sg:person.011424443565.77
62 rdf:rest N97b3e52018284923ab3b004f5b389936
63 N6eb5fcc21b7945228a45488baba6e42d schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N83b6d920c4744e519b1fefa5549c8d27 rdf:first sg:person.010557576601.85
66 rdf:rest N5fe1ac41985c40859e9083c303f77e72
67 N8ce14c4f31fb498c805aa3a284a54f77 rdf:first sg:person.07700725210.42
68 rdf:rest N83b6d920c4744e519b1fefa5549c8d27
69 N941196d3e42f43bcb5c69bb36b5a87f8 schema:name doi
70 schema:value 10.1007/s12650-018-0534-y
71 rdf:type schema:PropertyValue
72 N95809bee66d64867aaf79fff5cfad699 schema:issueNumber 2
73 rdf:type schema:PublicationIssue
74 N97b3e52018284923ab3b004f5b389936 rdf:first sg:person.014231075645.44
75 rdf:rest rdf:nil
76 Nb579c0e680b5473ba44b3d7cb6e74f46 schema:volumeNumber 22
77 rdf:type schema:PublicationVolume
78 Nd5491a5284844915a8142ba9945e9b5a schema:name dimensions_id
79 schema:value pub.1111313349
80 rdf:type schema:PropertyValue
81 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
82 schema:name Earth Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
85 schema:name Oceanography
86 rdf:type schema:DefinedTerm
87 sg:journal.1033383 schema:issn 1343-8875
88 1875-8975
89 schema:name Journal of Visualization
90 rdf:type schema:Periodical
91 sg:person.010557576601.85 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
92 schema:familyName Wei
93 schema:givenName Hao
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557576601.85
95 rdf:type schema:Person
96 sg:person.011424443565.77 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
97 schema:familyName Bi
98 schema:givenName Chongke
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424443565.77
100 rdf:type schema:Person
101 sg:person.014231075645.44 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
102 schema:familyName Liu
103 schema:givenName Zhilei
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231075645.44
105 rdf:type schema:Person
106 sg:person.07700725210.42 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
107 schema:familyName Zhang
108 schema:givenName Cuicui
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700725210.42
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-319-16817-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012552874
112 https://doi.org/10.1007/978-3-319-16817-3_23
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10872-011-0035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010037520
115 https://doi.org/10.1007/s10872-011-0035-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11390-017-1741-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085384749
118 https://doi.org/10.1007/s11390-017-1741-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/sdata.2015.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029977915
121 https://doi.org/10.1038/sdata.2015.28
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/srep24349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022162931
124 https://doi.org/10.1038/srep24349
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/2014jc010176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028090835
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/2016jc012376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045814047
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/jgrc.20155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007659543
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.pocean.2011.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024090871
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0097-8493(00)00029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700951
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1029/2009jc005657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046262220
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/access.2018.2825106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103273887
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icsdm.2015.7298038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093226362
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/jphot.2017.2766881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092430659
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/jphot.2017.2784958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099878470
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tgrs.2013.2280494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613156
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tvcg.2009.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813252
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tvcg.2011.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813555
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tvcg.2012.316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813907
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tvcg.2013.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813967
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tvcg.2013.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814172
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1117/12.643629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020789508
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1252418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008964379
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/1201775.882290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005372769
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1166/jctn.2016.6062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085665674
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/1520-0426(2003)20<772:iomefa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043234703
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1175/2009jtecho725.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012316573
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1615/jflowvisimageproc.2017019896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084354991
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2197/ipsjtcva.5.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047486213
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2197/ipsjtcva.7.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013596840
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5194/os-7-317-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047575302
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
179 schema:name College of Intelligence and Computing, Tianjin University, Tianjin, China
180 School of Computer Software, Tianjin University, Tianjin, China
181 School of Marine Science and Technology, Tianjin University, Tianjin, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...