Development on the reconstruction of photothermal imaging method for subsurface structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Moojoong Kim, Jaisuk Yoo, Dong-Kwon Kim, Hyunjung Kim

ABSTRACT

The photothermal imaging technique is a nondestructive inspection technique that visualizes the inside of a metal by utilizing the photothermal effect. Although the concept of photothermal imaging techniques has been proposed, systematic research on the characteristics thereof has not been conducted. This study attempts to enhance the measurement and reconstruction process for a photothermal imaging method. To detect the edge of a subsurface pattern more accurate, low-pass FFT (fast Fourier transform) filter for noise reduction of measured data, and derivative detectors are adopted for the reconstruction of photothermal imaging. The adopted methods are applied to and visualize 20 mm × 25 mm × 1.5 mm copper block including radius 5 mm, height 1 mm cylindrical resin as a subsurface pattern. The results show that the developed method can detect the edge of the resin subsurface 50% more accurately than the previous reconstruction method for photothermal imaging. More... »

PAGES

329-339

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-0533-z

DOI

http://dx.doi.org/10.1007/s12650-018-0533-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110133956


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Mechanical Engineering, Ajou University, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Moojoong", 
        "id": "sg:person.011563026076.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563026076.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Mechanical Engineering, Ajou University, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Jaisuk", 
        "id": "sg:person.016357433641.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357433641.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Mechanical Engineering, Ajou University, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong-Kwon", 
        "id": "sg:person.014550730076.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550730076.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Mechanical Engineering, Ajou University, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyunjung", 
        "id": "sg:person.013461433127.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013461433127.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-2523-9_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003526025", 
          "https://doi.org/10.1007/978-1-4613-2523-9_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2523-9_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003526025", 
          "https://doi.org/10.1007/978-1-4613-2523-9_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-015-0949-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009425877", 
          "https://doi.org/10.1007/s12206-015-0949-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-46972-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009990578", 
          "https://doi.org/10.1007/978-3-540-46972-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-46972-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009990578", 
          "https://doi.org/10.1007/978-3-540-46972-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joen.2008.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014349915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021499052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021499052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9780-9_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026518509", 
          "https://doi.org/10.1007/978-1-4613-9780-9_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2013.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028713811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1980.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2016.2574987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051117950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.347306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057957657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.352270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.354854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057971841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.92318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058132457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/30.793567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061152128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1984.1162257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tau.1967.1161903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061520639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098557610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2017.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100189680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2018.2802046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100848963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18020609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101138135"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The photothermal imaging technique is a nondestructive inspection technique that visualizes the inside of a metal by utilizing the photothermal effect. Although the concept of photothermal imaging techniques has been proposed, systematic research on the characteristics thereof has not been conducted. This study attempts to enhance the measurement and reconstruction process for a photothermal imaging method. To detect the edge of a subsurface pattern more accurate, low-pass FFT (fast Fourier transform) filter for noise reduction of measured data, and derivative detectors are adopted for the reconstruction of photothermal imaging. The adopted methods are applied to and visualize 20 mm \u00d7 25 mm \u00d7 1.5 mm copper block including radius 5 mm, height 1 mm cylindrical resin as a subsurface pattern. The results show that the developed method can detect the edge of the resin subsurface 50% more accurately than the previous reconstruction method for photothermal imaging. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-0533-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7502820", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Development on the reconstruction of photothermal imaging method for subsurface structure", 
    "pagination": "329-339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f641bc48dfb026139589ca8de0d86c77a8223758f21e923d788b042f9bc75b56"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-0533-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110133956"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-0533-z", 
      "https://app.dimensions.ai/details/publication/pub.1110133956"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68978_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-0533-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0533-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0533-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0533-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0533-z'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-0533-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf4f78369c4f44c6f8b37faf29bd87ee5
4 schema:citation sg:pub.10.1007/978-1-4613-2523-9_34
5 sg:pub.10.1007/978-1-4613-9780-9_14
6 sg:pub.10.1007/978-3-540-46972-8
7 sg:pub.10.1007/s12206-015-0949-5
8 https://doi.org/10.1016/j.infrared.2013.03.006
9 https://doi.org/10.1016/j.joen.2008.09.011
10 https://doi.org/10.1016/j.tca.2017.12.025
11 https://doi.org/10.1063/1.333891
12 https://doi.org/10.1063/1.347306
13 https://doi.org/10.1063/1.352270
14 https://doi.org/10.1063/1.354854
15 https://doi.org/10.1063/1.92318
16 https://doi.org/10.1098/rspb.1980.0020
17 https://doi.org/10.1103/physrevlett.93.257402
18 https://doi.org/10.1109/30.793567
19 https://doi.org/10.1109/massp.1984.1162257
20 https://doi.org/10.1109/tau.1967.1161903
21 https://doi.org/10.1109/tie.2016.2574987
22 https://doi.org/10.1109/tii.2018.2802046
23 https://doi.org/10.1137/1.9780898718324
24 https://doi.org/10.3390/s18020609
25 schema:datePublished 2019-04
26 schema:datePublishedReg 2019-04-01
27 schema:description The photothermal imaging technique is a nondestructive inspection technique that visualizes the inside of a metal by utilizing the photothermal effect. Although the concept of photothermal imaging techniques has been proposed, systematic research on the characteristics thereof has not been conducted. This study attempts to enhance the measurement and reconstruction process for a photothermal imaging method. To detect the edge of a subsurface pattern more accurate, low-pass FFT (fast Fourier transform) filter for noise reduction of measured data, and derivative detectors are adopted for the reconstruction of photothermal imaging. The adopted methods are applied to and visualize 20 mm × 25 mm × 1.5 mm copper block including radius 5 mm, height 1 mm cylindrical resin as a subsurface pattern. The results show that the developed method can detect the edge of the resin subsurface 50% more accurately than the previous reconstruction method for photothermal imaging.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nc0a89afd4aee4d28a579b977b19ed172
32 Nfca69ac62a0d4f28b8675a4fe0e49b4a
33 sg:journal.1033383
34 schema:name Development on the reconstruction of photothermal imaging method for subsurface structure
35 schema:pagination 329-339
36 schema:productId N045432249b0e4d2896bd6b319bc7274c
37 N8b41ba8c985e4a2c9b2665dfa612793a
38 Ne875e84ff7884b64880a291198f7ee43
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110133956
40 https://doi.org/10.1007/s12650-018-0533-z
41 schema:sdDatePublished 2019-04-11T13:25
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N8e5b24dd35914032b668570353d2daa0
44 schema:url https://link.springer.com/10.1007%2Fs12650-018-0533-z
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N045432249b0e4d2896bd6b319bc7274c schema:name dimensions_id
49 schema:value pub.1110133956
50 rdf:type schema:PropertyValue
51 N28e91ee0449b4b1a9a58573d0986c72f rdf:first sg:person.016357433641.57
52 rdf:rest N75f0b1e4630045b48d9aaddf5b78770c
53 N75f0b1e4630045b48d9aaddf5b78770c rdf:first sg:person.014550730076.68
54 rdf:rest Na21b4c5c3fc94bf19a221fa23a88649c
55 N8b41ba8c985e4a2c9b2665dfa612793a schema:name readcube_id
56 schema:value f641bc48dfb026139589ca8de0d86c77a8223758f21e923d788b042f9bc75b56
57 rdf:type schema:PropertyValue
58 N8e5b24dd35914032b668570353d2daa0 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Na21b4c5c3fc94bf19a221fa23a88649c rdf:first sg:person.013461433127.33
61 rdf:rest rdf:nil
62 Nc0a89afd4aee4d28a579b977b19ed172 schema:volumeNumber 22
63 rdf:type schema:PublicationVolume
64 Ne875e84ff7884b64880a291198f7ee43 schema:name doi
65 schema:value 10.1007/s12650-018-0533-z
66 rdf:type schema:PropertyValue
67 Nf4f78369c4f44c6f8b37faf29bd87ee5 rdf:first sg:person.011563026076.21
68 rdf:rest N28e91ee0449b4b1a9a58573d0986c72f
69 Nfca69ac62a0d4f28b8675a4fe0e49b4a schema:issueNumber 2
70 rdf:type schema:PublicationIssue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:grant.7502820 http://pending.schema.org/fundedItem sg:pub.10.1007/s12650-018-0533-z
78 rdf:type schema:MonetaryGrant
79 sg:journal.1033383 schema:issn 1343-8875
80 1875-8975
81 schema:name Journal of Visualization
82 rdf:type schema:Periodical
83 sg:person.011563026076.21 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
84 schema:familyName Kim
85 schema:givenName Moojoong
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563026076.21
87 rdf:type schema:Person
88 sg:person.013461433127.33 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
89 schema:familyName Kim
90 schema:givenName Hyunjung
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013461433127.33
92 rdf:type schema:Person
93 sg:person.014550730076.68 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
94 schema:familyName Kim
95 schema:givenName Dong-Kwon
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550730076.68
97 rdf:type schema:Person
98 sg:person.016357433641.57 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
99 schema:familyName Yoo
100 schema:givenName Jaisuk
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357433641.57
102 rdf:type schema:Person
103 sg:pub.10.1007/978-1-4613-2523-9_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003526025
104 https://doi.org/10.1007/978-1-4613-2523-9_34
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-1-4613-9780-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026518509
107 https://doi.org/10.1007/978-1-4613-9780-9_14
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-540-46972-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009990578
110 https://doi.org/10.1007/978-3-540-46972-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12206-015-0949-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009425877
113 https://doi.org/10.1007/s12206-015-0949-5
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.infrared.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028713811
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.joen.2008.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014349915
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.tca.2017.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100189680
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.333891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938605
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.347306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057957657
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.352270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967288
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.354854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057971841
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.92318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058132457
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1098/rspb.1980.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702537
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.93.257402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021499052
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/30.793567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061152128
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/massp.1984.1162257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385397
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tau.1967.1161903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061520639
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tie.2016.2574987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051117950
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tii.2018.2802046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100848963
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1137/1.9780898718324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098557610
146 rdf:type schema:CreativeWork
147 https://doi.org/10.3390/s18020609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101138135
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
150 schema:name Department of Mechanical Engineering, Ajou University, Suwon, Korea
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...