A visual recommendation system for co-authorship social networks (ChinaVis 2018) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Kai Yan, Weiwei Cui

ABSTRACT

User recommendation plays a crucial role in social network applications such as co-authorship networks. Existing techniques mostly strive to pursue the similarity between nodes or the accuracy of link prediction, leading personal networks to be monotonic. However, users often have various expectations regarding the growths of their social networks, which is clearly hard to capture via automatic algorithms. In addition, adopting a recommendation likely introduces subtle changes to a social network, which may further influence the next stage of recommendation. These highly personalized and dynamic aspects of the growth of a personal social network are rarely touched in existing work. In this project, we introduce an expectation-driven visual recommendation system to address the customized demands in co-authorship social networks. The system characterizes a person’s social network with the tags of the friends. It visually presents the changes made by individual recommendations, including the direct changes to the network and the potential changes that will be introduced by possible subsequent recommendations. A visual simulation interface allows users to add friends from the recommended list. The recommendation result will be updated instantly for inspection. Thus, users can comprehensively compare different growth strategies to find the most beneficial one. We demonstrate the system with DBLP academic co-authorship network to confirm its effectiveness and efficiency. More... »

PAGES

385-399

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-0528-9

DOI

http://dx.doi.org/10.1007/s12650-018-0528-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110105519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Kai", 
        "id": "sg:person.011327341644.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327341644.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research Asia (China)", 
          "id": "https://www.grid.ac/institutes/grid.466946.f", 
          "name": [
            "Microsoft Research Asia, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Weiwei", 
        "id": "sg:person.014700145741.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014700145741.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1125451.1125659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001614354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.promfg.2015.07.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006525765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-013-1228-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007098755", 
          "https://doi.org/10.1007/s11192-013-1228-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011466942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013331543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01679.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01679.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2623330.2623733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019627674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2016656.2016671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027442607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2449396.2449442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1518701.1518735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030085214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2508497.2508499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030777943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1454008.1454030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031961905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2557500.2557542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038654756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7637-6_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042931153", 
          "https://doi.org/10.1007/978-1-4899-7637-6_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2365952.2365964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043206187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1357054.1357222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043778242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/restud/rds006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060004712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2014.2322373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061691235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1120.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-53676-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083821943", 
          "https://doi.org/10.1007/978-3-319-53676-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3092742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091977907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092181018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3131782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092351305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cason.2011.6085920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093464682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3099023.3099073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096111557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jimec-16.2016.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099216343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jimec-16.2016.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099216343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2018.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101187019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3176349.3176357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101303652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3176349.3176357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101303652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3172944.3172959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101490922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3172944.3172959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101490922"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "User recommendation plays a crucial role in social network applications such as co-authorship networks. Existing techniques mostly strive to pursue the similarity between nodes or the accuracy of link prediction, leading personal networks to be monotonic. However, users often have various expectations regarding the growths of their social networks, which is clearly hard to capture via automatic algorithms. In addition, adopting a recommendation likely introduces subtle changes to a social network, which may further influence the next stage of recommendation. These highly personalized and dynamic aspects of the growth of a personal social network are rarely touched in existing work. In this project, we introduce an expectation-driven visual recommendation system to address the customized demands in co-authorship social networks. The system characterizes a person\u2019s social network with the tags of the friends. It visually presents the changes made by individual recommendations, including the direct changes to the network and the potential changes that will be introduced by possible subsequent recommendations. A visual simulation interface allows users to add friends from the recommended list. The recommendation result will be updated instantly for inspection. Thus, users can comprehensively compare different growth strategies to find the most beneficial one. We demonstrate the system with DBLP academic co-authorship network to confirm its effectiveness and efficiency. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-0528-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "A visual recommendation system for co-authorship social networks (ChinaVis 2018)", 
    "pagination": "385-399", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb9d589ca3d170d96e08cf9ca96ec864f004a7891b81b21c6008b4fb6222fc13"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-0528-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110105519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-0528-9", 
      "https://app.dimensions.ai/details/publication/pub.1110105519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68943_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-0528-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0528-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0528-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0528-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-0528-9'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-0528-9 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N014d94a45b174d6986491c5a1d288df1
4 schema:citation sg:pub.10.1007/978-1-4899-7637-6_26
5 sg:pub.10.1007/978-3-319-53676-7_4
6 sg:pub.10.1007/s11192-013-1228-9
7 https://doi.org/10.1016/j.physa.2017.09.042
8 https://doi.org/10.1016/j.physa.2018.02.010
9 https://doi.org/10.1016/j.promfg.2015.07.176
10 https://doi.org/10.1093/restud/rds006
11 https://doi.org/10.1109/cason.2011.6085920
12 https://doi.org/10.1109/tmc.2014.2322373
13 https://doi.org/10.1111/j.1467-8659.2009.01679.x
14 https://doi.org/10.1145/1125451.1125659
15 https://doi.org/10.1145/1357054.1357222
16 https://doi.org/10.1145/1454008.1454030
17 https://doi.org/10.1145/1518701.1518735
18 https://doi.org/10.1145/2016656.2016671
19 https://doi.org/10.1145/2339530.2339730
20 https://doi.org/10.1145/2365952.2365964
21 https://doi.org/10.1145/2449396.2449442
22 https://doi.org/10.1145/2508497.2508499
23 https://doi.org/10.1145/2557500.2557542
24 https://doi.org/10.1145/2623330.2623733
25 https://doi.org/10.1145/3092742
26 https://doi.org/10.1145/3099023.3099073
27 https://doi.org/10.1145/3131782
28 https://doi.org/10.1145/3172944.3172959
29 https://doi.org/10.1145/3176349.3176357
30 https://doi.org/10.1145/775047.775126
31 https://doi.org/10.1287/opre.1120.1148
32 https://doi.org/10.2991/jimec-16.2016.27
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description User recommendation plays a crucial role in social network applications such as co-authorship networks. Existing techniques mostly strive to pursue the similarity between nodes or the accuracy of link prediction, leading personal networks to be monotonic. However, users often have various expectations regarding the growths of their social networks, which is clearly hard to capture via automatic algorithms. In addition, adopting a recommendation likely introduces subtle changes to a social network, which may further influence the next stage of recommendation. These highly personalized and dynamic aspects of the growth of a personal social network are rarely touched in existing work. In this project, we introduce an expectation-driven visual recommendation system to address the customized demands in co-authorship social networks. The system characterizes a person’s social network with the tags of the friends. It visually presents the changes made by individual recommendations, including the direct changes to the network and the potential changes that will be introduced by possible subsequent recommendations. A visual simulation interface allows users to add friends from the recommended list. The recommendation result will be updated instantly for inspection. Thus, users can comprehensively compare different growth strategies to find the most beneficial one. We demonstrate the system with DBLP academic co-authorship network to confirm its effectiveness and efficiency.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nd217501c62af49f992430ce6066db392
40 Nf7b027a958c245028eb8764045260f96
41 sg:journal.1033383
42 schema:name A visual recommendation system for co-authorship social networks (ChinaVis 2018)
43 schema:pagination 385-399
44 schema:productId N24fa39e95522471c9d9b6c76caec90e7
45 N913a81041c7644a7b4e4ef66114768ec
46 Na02f1ece5c514a9a9836324b2ee131bb
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110105519
48 https://doi.org/10.1007/s12650-018-0528-9
49 schema:sdDatePublished 2019-04-11T13:22
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N3bfb5f9aea404de3a31a88a40a95f494
52 schema:url https://link.springer.com/10.1007%2Fs12650-018-0528-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N014d94a45b174d6986491c5a1d288df1 rdf:first sg:person.011327341644.24
57 rdf:rest Ncb4cd134232f430baa7c24fdee9593aa
58 N24fa39e95522471c9d9b6c76caec90e7 schema:name dimensions_id
59 schema:value pub.1110105519
60 rdf:type schema:PropertyValue
61 N3bfb5f9aea404de3a31a88a40a95f494 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N913a81041c7644a7b4e4ef66114768ec schema:name doi
64 schema:value 10.1007/s12650-018-0528-9
65 rdf:type schema:PropertyValue
66 Na02f1ece5c514a9a9836324b2ee131bb schema:name readcube_id
67 schema:value bb9d589ca3d170d96e08cf9ca96ec864f004a7891b81b21c6008b4fb6222fc13
68 rdf:type schema:PropertyValue
69 Ncb4cd134232f430baa7c24fdee9593aa rdf:first sg:person.014700145741.61
70 rdf:rest rdf:nil
71 Nd217501c62af49f992430ce6066db392 schema:volumeNumber 22
72 rdf:type schema:PublicationVolume
73 Nf7b027a958c245028eb8764045260f96 schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information Systems
80 rdf:type schema:DefinedTerm
81 sg:journal.1033383 schema:issn 1343-8875
82 1875-8975
83 schema:name Journal of Visualization
84 rdf:type schema:Periodical
85 sg:person.011327341644.24 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
86 schema:familyName Yan
87 schema:givenName Kai
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327341644.24
89 rdf:type schema:Person
90 sg:person.014700145741.61 schema:affiliation https://www.grid.ac/institutes/grid.466946.f
91 schema:familyName Cui
92 schema:givenName Weiwei
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014700145741.61
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4899-7637-6_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042931153
96 https://doi.org/10.1007/978-1-4899-7637-6_26
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-319-53676-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083821943
99 https://doi.org/10.1007/978-3-319-53676-7_4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11192-013-1228-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098755
102 https://doi.org/10.1007/s11192-013-1228-9
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.physa.2017.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092181018
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.physa.2018.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101187019
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.promfg.2015.07.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006525765
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1093/restud/rds006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060004712
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/cason.2011.6085920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093464682
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tmc.2014.2322373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061691235
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1111/j.1467-8659.2009.01679.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013761049
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1125451.1125659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001614354
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1357054.1357222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043778242
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1454008.1454030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031961905
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/1518701.1518735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030085214
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/2016656.2016671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027442607
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/2339530.2339730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013331543
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/2365952.2365964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043206187
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/2449396.2449442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446333
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/2508497.2508499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030777943
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/2557500.2557542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038654756
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/2623330.2623733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627674
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/3092742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091977907
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/3099023.3099073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096111557
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/3131782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092351305
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/3172944.3172959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101490922
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/3176349.3176357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303652
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/775047.775126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011466942
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1287/opre.1120.1148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726703
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2991/jimec-16.2016.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099216343
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
157 schema:name Harbin Institute of Technology, Harbin, China
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.466946.f schema:alternateName Microsoft Research Asia (China)
160 schema:name Microsoft Research Asia, Beijing, China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...