High-speed visualization of cavitation evolution around a marine propeller View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Chuanhong Zhang, Fang Lu, Linzhang Lu

ABSTRACT

Nowadays, a lot of types of digital high-speed video camera are available with a wide range of image rates. The new camera technology has made it possible to observe the cavitation on a propeller. However, until recently cavitation on ship propellers is observed visually using the so-called time-lapse observations. The conventional time-lapse method cannot accurately detect the temporal development of cavitation. High-speed video visualizes the complete process of cavitation. A high-speed video system was developed to observe the cavity dynamics in more detail in a more reliable way. This paper shows the high-speed visualization results of a cavitating propeller, which give a better recording of the complete cavitation dynamics. Appropriate post-processing of the obtained high-speed images enables the detailed illustration of the interface topology of the propeller cavitation, and the weak tip vortex cavitation which is not readily apparent to the naked eyes can be detected by the edge-detection methodology. This can be used to explain the major discrepancies between acoustic criterion and optical criterion of detection of cavitation inception, which are known to provide different answers in the most practical applications. More... »

PAGES

273-281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-018-00540-7

DOI

http://dx.doi.org/10.1007/s12650-018-00540-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111323499


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Shipbuilding Industry Corporation (China)", 
          "id": "https://www.grid.ac/institutes/grid.464256.7", 
          "name": [
            "National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, 214082, Wuxi, Jiangsu, China", 
            "Jiangsu Key Laboratory of Green Ship Technology, 214082, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chuanhong", 
        "id": "sg:person.011327317257.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327317257.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Shipbuilding Industry Corporation (China)", 
          "id": "https://www.grid.ac/institutes/grid.464256.7", 
          "name": [
            "National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, 214082, Wuxi, Jiangsu, China", 
            "Jiangsu Key Laboratory of Green Ship Technology, 214082, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Fang", 
        "id": "sg:person.011654100155.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654100155.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Shipbuilding Industry Corporation (China)", 
          "id": "https://www.grid.ac/institutes/grid.464256.7", 
          "name": [
            "National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, 214082, Wuxi, Jiangsu, China", 
            "Jiangsu Key Laboratory of Green Ship Technology, 214082, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Linzhang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspb.1980.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1986.4767851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1521956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1852476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2017.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100426814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2017.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100426814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Nowadays, a lot of types of digital high-speed video camera are available with a wide range of image rates. The new camera technology has made it possible to observe the cavitation on a propeller. However, until recently cavitation on ship propellers is observed visually using the so-called time-lapse observations. The conventional time-lapse method cannot accurately detect the temporal development of cavitation. High-speed video visualizes the complete process of cavitation. A high-speed video system was developed to observe the cavity dynamics in more detail in a more reliable way. This paper shows the high-speed visualization results of a cavitating propeller, which give a better recording of the complete cavitation dynamics. Appropriate post-processing of the obtained high-speed images enables the detailed illustration of the interface topology of the propeller cavitation, and the weak tip vortex cavitation which is not readily apparent to the naked eyes can be detected by the edge-detection methodology. This can be used to explain the major discrepancies between acoustic criterion and optical criterion of detection of cavitation inception, which are known to provide different answers in the most practical applications. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12650-018-00540-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "High-speed visualization of cavitation evolution around a marine propeller", 
    "pagination": "273-281", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "954ec969f6f05c81deb0cc94e53ea233809f4e6089a22b0163254845944f91e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-018-00540-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111323499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-018-00540-7", 
      "https://app.dimensions.ai/details/publication/pub.1111323499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68971_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12650-018-00540-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-00540-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-00540-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-00540-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-018-00540-7'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-018-00540-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2fbf202633254d609bddf045031f8ad6
4 schema:citation https://doi.org/10.1017/jfm.2017.885
5 https://doi.org/10.1098/rspb.1980.0020
6 https://doi.org/10.1109/tpami.1986.4767851
7 https://doi.org/10.1115/1.1521956
8 https://doi.org/10.1115/1.1852476
9 schema:datePublished 2019-04
10 schema:datePublishedReg 2019-04-01
11 schema:description Nowadays, a lot of types of digital high-speed video camera are available with a wide range of image rates. The new camera technology has made it possible to observe the cavitation on a propeller. However, until recently cavitation on ship propellers is observed visually using the so-called time-lapse observations. The conventional time-lapse method cannot accurately detect the temporal development of cavitation. High-speed video visualizes the complete process of cavitation. A high-speed video system was developed to observe the cavity dynamics in more detail in a more reliable way. This paper shows the high-speed visualization results of a cavitating propeller, which give a better recording of the complete cavitation dynamics. Appropriate post-processing of the obtained high-speed images enables the detailed illustration of the interface topology of the propeller cavitation, and the weak tip vortex cavitation which is not readily apparent to the naked eyes can be detected by the edge-detection methodology. This can be used to explain the major discrepancies between acoustic criterion and optical criterion of detection of cavitation inception, which are known to provide different answers in the most practical applications.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N06b03a449d544d09b92c6d873193ad76
16 Nea03419c03314db9a89bcb50c82068ee
17 sg:journal.1033383
18 schema:name High-speed visualization of cavitation evolution around a marine propeller
19 schema:pagination 273-281
20 schema:productId N991afc6afc6546c7866952a3258372cb
21 Nc6205c27cbe34f6b91f6a406ed58f11f
22 Ne16ee9ad041e4680a2732b79cd3099f6
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111323499
24 https://doi.org/10.1007/s12650-018-00540-7
25 schema:sdDatePublished 2019-04-11T13:24
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N9fafa31960ee4e77b7ac2acceac070c6
28 schema:url https://link.springer.com/10.1007%2Fs12650-018-00540-7
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N06b03a449d544d09b92c6d873193ad76 schema:volumeNumber 22
33 rdf:type schema:PublicationVolume
34 N1b3040a3828b41f08731a3f83e1cbe71 rdf:first sg:person.011654100155.30
35 rdf:rest Nc580e149456a44bc80d439f0d225be5e
36 N2fbf202633254d609bddf045031f8ad6 rdf:first sg:person.011327317257.88
37 rdf:rest N1b3040a3828b41f08731a3f83e1cbe71
38 N66d0a658e7474bd68879b0ee666ab649 schema:affiliation https://www.grid.ac/institutes/grid.464256.7
39 schema:familyName Lu
40 schema:givenName Linzhang
41 rdf:type schema:Person
42 N991afc6afc6546c7866952a3258372cb schema:name dimensions_id
43 schema:value pub.1111323499
44 rdf:type schema:PropertyValue
45 N9fafa31960ee4e77b7ac2acceac070c6 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nc580e149456a44bc80d439f0d225be5e rdf:first N66d0a658e7474bd68879b0ee666ab649
48 rdf:rest rdf:nil
49 Nc6205c27cbe34f6b91f6a406ed58f11f schema:name doi
50 schema:value 10.1007/s12650-018-00540-7
51 rdf:type schema:PropertyValue
52 Ne16ee9ad041e4680a2732b79cd3099f6 schema:name readcube_id
53 schema:value 954ec969f6f05c81deb0cc94e53ea233809f4e6089a22b0163254845944f91e7
54 rdf:type schema:PropertyValue
55 Nea03419c03314db9a89bcb50c82068ee schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
58 schema:name Information and Computing Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
61 schema:name Artificial Intelligence and Image Processing
62 rdf:type schema:DefinedTerm
63 sg:journal.1033383 schema:issn 1343-8875
64 1875-8975
65 schema:name Journal of Visualization
66 rdf:type schema:Periodical
67 sg:person.011327317257.88 schema:affiliation https://www.grid.ac/institutes/grid.464256.7
68 schema:familyName Zhang
69 schema:givenName Chuanhong
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327317257.88
71 rdf:type schema:Person
72 sg:person.011654100155.30 schema:affiliation https://www.grid.ac/institutes/grid.464256.7
73 schema:familyName Lu
74 schema:givenName Fang
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654100155.30
76 rdf:type schema:Person
77 https://doi.org/10.1017/jfm.2017.885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426814
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1098/rspb.1980.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702537
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1115/1.1521956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071518
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1115/1.1852476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075464
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.464256.7 schema:alternateName China Shipbuilding Industry Corporation (China)
88 schema:name Jiangsu Key Laboratory of Green Ship Technology, 214082, Wuxi, Jiangsu, China
89 National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, 214082, Wuxi, Jiangsu, China
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...