Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-14

AUTHORS

Zifeng Yang, Mark Johnson

ABSTRACT

Through a combination of cross-correlation and optical flow method (OFM), a novel technique can benefit from the strengths of each method while mitigating the flaws each individual method contains. The hybrid Particle Image Velocimetry (PIV) method utilizes the state-of-the-art cross-correlation method to account for the relatively large displacements of particles and refine the flow field using the high-resolution analysis of OFM. Image processing techniques such as interpolation, image shifting, and Gaussian filtering are crucial for integrating the cross-correlation technique with optical flow analysis. The accuracy of the hybrid PIV method was validated using standard simulated PIV images that encompassed various parameters encountered in PIV measurements. Each set of images was analyzed by the hybrid method and three other widely used correlation techniques to verify the accuracy. Results confirmed that the hybrid method is consistently more accurate than the other methods in generating the flow vectors, especially near the boundaries. Additionally, for cases dealing with large-sized particles or small displacements, the hybrid PIV method also attains more accurate results.Graphical Abstract More... »

PAGES

625-638

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12650-017-0417-7

DOI

http://dx.doi.org/10.1007/s12650-017-0417-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083827608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zifeng", 
        "id": "sg:person.012051363470.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051363470.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Mark", 
        "id": "sg:person.010633177000.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010633177000.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-009-0778-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009022840", 
          "https://doi.org/10.1007/s00348-009-0778-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480050222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041561681", 
          "https://doi.org/10.1007/s003480050222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-004-0880-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040815309", 
          "https://doi.org/10.1007/s00348-004-0880-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0048-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026301024", 
          "https://doi.org/10.1007/s00348-005-0048-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480070007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051376056", 
          "https://doi.org/10.1007/s003480070007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03182477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031875583", 
          "https://doi.org/10.1007/bf03182477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018108333", 
          "https://doi.org/10.1007/s00348-005-0991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72308-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033262669", 
          "https://doi.org/10.1007/978-3-540-72308-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-008-0462-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001502731", 
          "https://doi.org/10.1007/s00348-008-0462-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480050318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022149180", 
          "https://doi.org/10.1007/s003480050318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-015-2036-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036547464", 
          "https://doi.org/10.1007/s00348-015-2036-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000045324.43199.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028948709", 
          "https://doi.org/10.1023/b:visi.0000045324.43199.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0951-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004641430", 
          "https://doi.org/10.1007/s00348-005-0951-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-014-1874-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011964748", 
          "https://doi.org/10.1007/s00348-014-1874-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-14", 
    "datePublishedReg": "2017-02-14", 
    "description": "Through a combination of cross-correlation and optical flow method (OFM), a novel technique can benefit from the strengths of each method while mitigating the flaws each individual method contains. The hybrid Particle Image Velocimetry (PIV) method utilizes the state-of-the-art cross-correlation method to account for the relatively large displacements of particles and refine the flow field using the high-resolution analysis of OFM. Image processing techniques such as interpolation, image shifting, and Gaussian filtering are crucial for integrating the cross-correlation technique with optical flow analysis. The accuracy of the hybrid PIV method was validated using standard simulated PIV images that encompassed various parameters encountered in PIV measurements. Each set of images was analyzed by the hybrid method and three other widely used correlation techniques to verify the accuracy. Results confirmed that the hybrid method is consistently more accurate than the other methods in generating the flow vectors, especially near the boundaries. Additionally, for cases dealing with large-sized particles or small displacements, the hybrid PIV method also attains more accurate results.Graphical Abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12650-017-0417-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1033383", 
        "issn": [
          "1343-8875", 
          "1875-8975"
        ], 
        "name": "Journal of Visualization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "optical flow method", 
      "PIV method", 
      "particle image velocimetry method", 
      "particle image velocimetry", 
      "image velocimetry method", 
      "flow method", 
      "PIV measurements", 
      "image velocimetry", 
      "PIV images", 
      "velocimetry method", 
      "flow field", 
      "large-sized particles", 
      "hybrid method", 
      "image processing techniques", 
      "large displacements", 
      "processing techniques", 
      "flow analysis", 
      "cross-correlation method", 
      "small displacements", 
      "optical flow analysis", 
      "cross-correlation technique", 
      "flow vectors", 
      "Gaussian filtering", 
      "correlation technique", 
      "image shifting", 
      "accurate results", 
      "displacement", 
      "particles", 
      "novel technique", 
      "velocimetry", 
      "technique", 
      "method", 
      "accuracy", 
      "strength", 
      "filtering", 
      "boundaries", 
      "parameters", 
      "interpolation", 
      "measurements", 
      "images", 
      "results", 
      "flaws", 
      "field", 
      "combination", 
      "individual methods", 
      "set of images", 
      "high-resolution analysis", 
      "shifting", 
      "analysis", 
      "vector", 
      "set", 
      "state", 
      "cases"
    ], 
    "name": "Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method", 
    "pagination": "625-638", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083827608"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12650-017-0417-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12650-017-0417-7", 
      "https://app.dimensions.ai/details/publication/pub.1083827608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_746.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12650-017-0417-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12650-017-0417-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12650-017-0417-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12650-017-0417-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12650-017-0417-7'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      94 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12650-017-0417-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:17
5 anzsrc-for:1702
6 schema:author N371a7f590b934acd9ecd0106e254bd27
7 schema:citation sg:pub.10.1007/978-3-540-72308-0
8 sg:pub.10.1007/bf03182477
9 sg:pub.10.1007/s00348-004-0880-5
10 sg:pub.10.1007/s00348-005-0048-y
11 sg:pub.10.1007/s00348-005-0951-2
12 sg:pub.10.1007/s00348-005-0991-7
13 sg:pub.10.1007/s00348-008-0462-z
14 sg:pub.10.1007/s00348-009-0778-3
15 sg:pub.10.1007/s00348-014-1874-6
16 sg:pub.10.1007/s00348-015-2036-1
17 sg:pub.10.1007/s003480050222
18 sg:pub.10.1007/s003480050318
19 sg:pub.10.1007/s003480070007
20 sg:pub.10.1023/b:visi.0000045324.43199.43
21 schema:datePublished 2017-02-14
22 schema:datePublishedReg 2017-02-14
23 schema:description Through a combination of cross-correlation and optical flow method (OFM), a novel technique can benefit from the strengths of each method while mitigating the flaws each individual method contains. The hybrid Particle Image Velocimetry (PIV) method utilizes the state-of-the-art cross-correlation method to account for the relatively large displacements of particles and refine the flow field using the high-resolution analysis of OFM. Image processing techniques such as interpolation, image shifting, and Gaussian filtering are crucial for integrating the cross-correlation technique with optical flow analysis. The accuracy of the hybrid PIV method was validated using standard simulated PIV images that encompassed various parameters encountered in PIV measurements. Each set of images was analyzed by the hybrid method and three other widely used correlation techniques to verify the accuracy. Results confirmed that the hybrid method is consistently more accurate than the other methods in generating the flow vectors, especially near the boundaries. Additionally, for cases dealing with large-sized particles or small displacements, the hybrid PIV method also attains more accurate results.Graphical Abstract
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N7a24288691ae4d439cfeef3783abc047
27 Nf2cf3e06b0f0420f9b6bc1ee2257dfdc
28 sg:journal.1033383
29 schema:keywords Gaussian filtering
30 PIV images
31 PIV measurements
32 PIV method
33 accuracy
34 accurate results
35 analysis
36 boundaries
37 cases
38 combination
39 correlation technique
40 cross-correlation method
41 cross-correlation technique
42 displacement
43 field
44 filtering
45 flaws
46 flow analysis
47 flow field
48 flow method
49 flow vectors
50 high-resolution analysis
51 hybrid method
52 image processing techniques
53 image shifting
54 image velocimetry
55 image velocimetry method
56 images
57 individual methods
58 interpolation
59 large displacements
60 large-sized particles
61 measurements
62 method
63 novel technique
64 optical flow analysis
65 optical flow method
66 parameters
67 particle image velocimetry
68 particle image velocimetry method
69 particles
70 processing techniques
71 results
72 set
73 set of images
74 shifting
75 small displacements
76 state
77 strength
78 technique
79 vector
80 velocimetry
81 velocimetry method
82 schema:name Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method
83 schema:pagination 625-638
84 schema:productId N8c7c3dafbe894b699f4c89944eaea81e
85 Nf8f3fcb5d8034c3d965d543afe335389
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083827608
87 https://doi.org/10.1007/s12650-017-0417-7
88 schema:sdDatePublished 2022-12-01T06:36
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2c6f3280aeb249b09789f994feebac40
91 schema:url https://doi.org/10.1007/s12650-017-0417-7
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N2c6f3280aeb249b09789f994feebac40 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N371a7f590b934acd9ecd0106e254bd27 rdf:first sg:person.012051363470.46
98 rdf:rest Nf91067d367d24848af8397df35c4e44c
99 N7a24288691ae4d439cfeef3783abc047 schema:issueNumber 3
100 rdf:type schema:PublicationIssue
101 N8c7c3dafbe894b699f4c89944eaea81e schema:name doi
102 schema:value 10.1007/s12650-017-0417-7
103 rdf:type schema:PropertyValue
104 Nf2cf3e06b0f0420f9b6bc1ee2257dfdc schema:volumeNumber 20
105 rdf:type schema:PublicationVolume
106 Nf8f3fcb5d8034c3d965d543afe335389 schema:name dimensions_id
107 schema:value pub.1083827608
108 rdf:type schema:PropertyValue
109 Nf91067d367d24848af8397df35c4e44c rdf:first sg:person.010633177000.86
110 rdf:rest rdf:nil
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
118 schema:name Computation Theory and Mathematics
119 rdf:type schema:DefinedTerm
120 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
121 schema:name Psychology and Cognitive Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
124 schema:name Cognitive Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1033383 schema:issn 1343-8875
127 1875-8975
128 schema:name Journal of Visualization
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010633177000.86 schema:affiliation grid-institutes:grid.268333.f
132 schema:familyName Johnson
133 schema:givenName Mark
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010633177000.86
135 rdf:type schema:Person
136 sg:person.012051363470.46 schema:affiliation grid-institutes:grid.268333.f
137 schema:familyName Yang
138 schema:givenName Zifeng
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051363470.46
140 rdf:type schema:Person
141 sg:pub.10.1007/978-3-540-72308-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033262669
142 https://doi.org/10.1007/978-3-540-72308-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf03182477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031875583
145 https://doi.org/10.1007/bf03182477
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00348-004-0880-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040815309
148 https://doi.org/10.1007/s00348-004-0880-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00348-005-0048-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026301024
151 https://doi.org/10.1007/s00348-005-0048-y
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00348-005-0951-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004641430
154 https://doi.org/10.1007/s00348-005-0951-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00348-005-0991-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018108333
157 https://doi.org/10.1007/s00348-005-0991-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00348-008-0462-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001502731
160 https://doi.org/10.1007/s00348-008-0462-z
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00348-009-0778-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009022840
163 https://doi.org/10.1007/s00348-009-0778-3
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00348-014-1874-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011964748
166 https://doi.org/10.1007/s00348-014-1874-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00348-015-2036-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036547464
169 https://doi.org/10.1007/s00348-015-2036-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s003480050222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041561681
172 https://doi.org/10.1007/s003480050222
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s003480050318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022149180
175 https://doi.org/10.1007/s003480050318
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s003480070007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051376056
178 https://doi.org/10.1007/s003480070007
179 rdf:type schema:CreativeWork
180 sg:pub.10.1023/b:visi.0000045324.43199.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028948709
181 https://doi.org/10.1023/b:visi.0000045324.43199.43
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.268333.f schema:alternateName Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA
184 schema:name Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, 209 RC, 45435, Dayton, OH, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...