Bianchi type VI0 cosmological model in self-creation theory in general relativity and Lyra geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

E. A. Hegazy, Farook Rahaman

ABSTRACT

In this paper, we show that no solutions exist for Bianchi type VI0 cosmological model in the modified gravity theories, namely in self-creation theory and in gravity theory based on Lyra geometry under the two physical conditions: The pressure p and the density ρ of the fluid are related by the equation of state p=λρ,0≤λ≤1, and the scalar expansion Θ of the cosmological model is proportional to the eigenvalue σ33 of the shear tensor. In self-creation theory, only the possible solutions are found for dust and radiation cases. Physical and geometrical properties of the obtained models are discussed for different cases of matter distribution. Also, we study the effect of the scalar field ϕ on the entropy S of our universe with an expression for the entropy for all different cases of matter distribution. Also we have proved that the Lyra term has no effect on the entropy of the universe. More... »

PAGES

1-8

References to SciGraph publications

  • 1990-06. Bianchi type-I models in self-creation theory of gravitation in ASTROPHYSICS AND SPACE SCIENCE
  • 2005-02-16. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-12. Self-creation cosmological solutions in ASTROPHYSICS AND SPACE SCIENCE
  • 1991-05. Bianchi type-II and III models in self-creation cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 1997-03. Early Universe in Self-Creation Cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 2008-03. String Cosmological Solutions in Self-Creation Theory of Gravitation in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2019-04. Bianchi Type VI Cosmological Model in Self-Creation Theory in IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE
  • 1951-03. Über eine Modifikation der Riemannschen Geometrie in MATHEMATISCHE ZEITSCHRIFT
  • 1989-05. Bianchi type-VI0 models in self-creation cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 1985-11. Exact self-creation cosmological solutions in ASTROPHYSICS AND SPACE SCIENCE
  • 1982-02. On two “self-creation” cosmologies in GENERAL RELATIVITY AND GRAVITATION
  • 2012-11. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests in ASTROPHYSICS AND SPACE SCIENCE
  • 2011-04. Bianchi type-VI0 cosmological models with anisotropic dark energy in ASTROPHYSICS AND SPACE SCIENCE
  • 2008-06. Plane symmetric cosmological models with negative constant deceleration parameter in self creation theory in ASTROPHYSICS AND SPACE SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12648-019-01424-8

    DOI

    http://dx.doi.org/10.1007/s12648-019-01424-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113122587


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Minia University", 
              "id": "https://www.grid.ac/institutes/grid.411806.a", 
              "name": [
                "Mathematics Department, Faculty of Science, Minia University, 61519, El-Minia, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hegazy", 
            "givenName": "E. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Mathematics, Jadavpur University, 700032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rahaman", 
            "givenName": "Farook", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10509-010-0519-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008551456", 
              "https://doi.org/10.1007/s10509-010-0519-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1181-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014037089", 
              "https://doi.org/10.1007/s10509-012-1181-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/tam0303163p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016509716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01175135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017957651", 
              "https://doi.org/10.1007/bf01175135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1001140931771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019671552", 
              "https://doi.org/10.1023/a:1001140931771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/am.2011.23041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022222620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.124006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030166808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.124006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030166808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-008-9844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039948302", 
              "https://doi.org/10.1007/s10509-008-9844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-008-9844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039948302", 
              "https://doi.org/10.1007/s10509-008-9844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00636864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045804122", 
              "https://doi.org/10.1007/bf00636864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00636864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045804122", 
              "https://doi.org/10.1007/bf00636864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00645214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045872901", 
              "https://doi.org/10.1007/bf00645214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00645214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045872901", 
              "https://doi.org/10.1007/bf00645214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19163540702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046463341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/02/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048344586", 
              "https://doi.org/10.1088/1126-6708/2005/02/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-007-9488-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050909424", 
              "https://doi.org/10.1007/s10773-007-9488-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00642359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052513745", 
              "https://doi.org/10.1007/bf00642359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00642359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052513745", 
              "https://doi.org/10.1007/bf00642359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/149448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058480739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271802002207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062967528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271815500984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062969951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.11648/j.ajmp.20130205.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063385253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00653794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138009", 
              "https://doi.org/10.1007/bf00653794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511524646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098707667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40995-018-0530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101339088", 
              "https://doi.org/10.1007/s40995-018-0530-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-29", 
        "datePublishedReg": "2019-03-29", 
        "description": "In this paper, we show that no solutions exist for Bianchi type VI0 cosmological model in the modified gravity theories, namely in self-creation theory and in gravity theory based on Lyra geometry under the two physical conditions: The pressure p and the density \u03c1 of the fluid are related by the equation of state p=\u03bb\u03c1,0\u2264\u03bb\u22641, and the scalar expansion \u0398 of the cosmological model is proportional to the eigenvalue \u03c333 of the shear tensor. In self-creation theory, only the possible solutions are found for dust and radiation cases. Physical and geometrical properties of the obtained models are discussed for different cases of matter distribution. Also, we study the effect of the scalar field \u03d5 on the entropy S of our universe with an expression for the entropy for all different cases of matter distribution. Also we have proved that the Lyra term has no effect on the entropy of the universe.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12648-019-01424-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048519", 
            "issn": [
              "0973-1458", 
              "0974-9845"
            ], 
            "name": "Indian Journal of Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Bianchi type VI0 cosmological model in self-creation theory in general relativity and Lyra geometry", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f655f9873d335aa94f3a473ff0595e031c844f0f70fb6a213567bdb3d64f25a5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12648-019-01424-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113122587"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12648-019-01424-8", 
          "https://app.dimensions.ai/details/publication/pub.1113122587"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68984_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12648-019-01424-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12648-019-01424-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12648-019-01424-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12648-019-01424-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12648-019-01424-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12648-019-01424-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc0bdb9eb8a664fa68e5fef3b3fbf1445
    4 schema:citation sg:pub.10.1007/bf00636864
    5 sg:pub.10.1007/bf00642359
    6 sg:pub.10.1007/bf00643809
    7 sg:pub.10.1007/bf00645214
    8 sg:pub.10.1007/bf00653794
    9 sg:pub.10.1007/bf00756918
    10 sg:pub.10.1007/bf01175135
    11 sg:pub.10.1007/s10509-008-9844-1
    12 sg:pub.10.1007/s10509-010-0519-3
    13 sg:pub.10.1007/s10509-012-1181-8
    14 sg:pub.10.1007/s10773-007-9488-x
    15 sg:pub.10.1007/s40995-018-0530-z
    16 sg:pub.10.1023/a:1001140931771
    17 sg:pub.10.1088/1126-6708/2005/02/050
    18 https://doi.org/10.1002/andp.19163540702
    19 https://doi.org/10.1017/cbo9780511524646
    20 https://doi.org/10.1086/149448
    21 https://doi.org/10.1103/physrev.124.925
    22 https://doi.org/10.1103/physrevd.69.124006
    23 https://doi.org/10.1142/s0218271802002207
    24 https://doi.org/10.1142/s0218271815500984
    25 https://doi.org/10.11648/j.ajmp.20130205.15
    26 https://doi.org/10.2298/tam0303163p
    27 https://doi.org/10.4236/am.2011.23041
    28 schema:datePublished 2019-03-29
    29 schema:datePublishedReg 2019-03-29
    30 schema:description In this paper, we show that no solutions exist for Bianchi type VI0 cosmological model in the modified gravity theories, namely in self-creation theory and in gravity theory based on Lyra geometry under the two physical conditions: The pressure p and the density ρ of the fluid are related by the equation of state p=λρ,0≤λ≤1, and the scalar expansion Θ of the cosmological model is proportional to the eigenvalue σ33 of the shear tensor. In self-creation theory, only the possible solutions are found for dust and radiation cases. Physical and geometrical properties of the obtained models are discussed for different cases of matter distribution. Also, we study the effect of the scalar field ϕ on the entropy S of our universe with an expression for the entropy for all different cases of matter distribution. Also we have proved that the Lyra term has no effect on the entropy of the universe.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf sg:journal.1048519
    35 schema:name Bianchi type VI0 cosmological model in self-creation theory in general relativity and Lyra geometry
    36 schema:pagination 1-8
    37 schema:productId N0342b99feaa545578474f7b564595913
    38 N0d00b8a29ca74e448c326b6510075c91
    39 N5d829b9acd234cc4b78d6e8f336bdeb6
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113122587
    41 https://doi.org/10.1007/s12648-019-01424-8
    42 schema:sdDatePublished 2019-04-11T13:25
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nf83102e7c8874356b3e1c81b3e72e489
    45 schema:url https://link.springer.com/10.1007%2Fs12648-019-01424-8
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N0342b99feaa545578474f7b564595913 schema:name readcube_id
    50 schema:value f655f9873d335aa94f3a473ff0595e031c844f0f70fb6a213567bdb3d64f25a5
    51 rdf:type schema:PropertyValue
    52 N0d00b8a29ca74e448c326b6510075c91 schema:name doi
    53 schema:value 10.1007/s12648-019-01424-8
    54 rdf:type schema:PropertyValue
    55 N55ccb12162db4ee69f392b3a75ad2ba2 rdf:first Nb3ff6297d9444a3db475d13c1c0fcd5a
    56 rdf:rest rdf:nil
    57 N5d829b9acd234cc4b78d6e8f336bdeb6 schema:name dimensions_id
    58 schema:value pub.1113122587
    59 rdf:type schema:PropertyValue
    60 Nb25ed60cdbe84d9b98549834b72b36a4 schema:affiliation https://www.grid.ac/institutes/grid.411806.a
    61 schema:familyName Hegazy
    62 schema:givenName E. A.
    63 rdf:type schema:Person
    64 Nb3ff6297d9444a3db475d13c1c0fcd5a schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    65 schema:familyName Rahaman
    66 schema:givenName Farook
    67 rdf:type schema:Person
    68 Nc0bdb9eb8a664fa68e5fef3b3fbf1445 rdf:first Nb25ed60cdbe84d9b98549834b72b36a4
    69 rdf:rest N55ccb12162db4ee69f392b3a75ad2ba2
    70 Nf83102e7c8874356b3e1c81b3e72e489 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1048519 schema:issn 0973-1458
    79 0974-9845
    80 schema:name Indian Journal of Physics
    81 rdf:type schema:Periodical
    82 sg:pub.10.1007/bf00636864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045804122
    83 https://doi.org/10.1007/bf00636864
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf00642359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052513745
    86 https://doi.org/10.1007/bf00642359
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf00643809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038006815
    89 https://doi.org/10.1007/bf00643809
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf00645214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045872901
    92 https://doi.org/10.1007/bf00645214
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf00653794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138009
    95 https://doi.org/10.1007/bf00653794
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf00756918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191447
    98 https://doi.org/10.1007/bf00756918
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01175135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017957651
    101 https://doi.org/10.1007/bf01175135
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10509-008-9844-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039948302
    104 https://doi.org/10.1007/s10509-008-9844-1
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10509-010-0519-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008551456
    107 https://doi.org/10.1007/s10509-010-0519-3
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s10509-012-1181-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014037089
    110 https://doi.org/10.1007/s10509-012-1181-8
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s10773-007-9488-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909424
    113 https://doi.org/10.1007/s10773-007-9488-x
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s40995-018-0530-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101339088
    116 https://doi.org/10.1007/s40995-018-0530-z
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1023/a:1001140931771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671552
    119 https://doi.org/10.1023/a:1001140931771
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1088/1126-6708/2005/02/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048344586
    122 https://doi.org/10.1088/1126-6708/2005/02/050
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/andp.19163540702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046463341
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1017/cbo9780511524646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098707667
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1086/149448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058480739
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrev.124.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424827
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physrevd.69.124006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030166808
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1142/s0218271802002207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062967528
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1142/s0218271815500984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062969951
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.11648/j.ajmp.20130205.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063385253
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2298/tam0303163p schema:sameAs https://app.dimensions.ai/details/publication/pub.1016509716
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.4236/am.2011.23041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022222620
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    145 schema:name Department of Mathematics, Jadavpur University, 700032, Kolkata, West Bengal, India
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.411806.a schema:alternateName Minia University
    148 schema:name Mathematics Department, Faculty of Science, Minia University, 61519, El-Minia, Egypt
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...