Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-21

AUTHORS

Lei Kang, Yi-Ran Zhou, Gang Zhao, Kun Liu, Ni Tian

ABSTRACT

In the present work, continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests. Besides, the time–temperature–properties (TTP) curves of this alloy were obtained during isothermal treatments. Based on the accurate cooling curves and TTP curves, the hardness distribution along the thickness direction of 7B50 alloy thick plates was predicted by quench factor analysis method. It is found that the quench sensitive temperature range of 7B50 alloy is 240–410 °C, the nose temperature is 335 °C, and the incubation period at the nose temperature is about 0.87 s. When 7B50 alloy was isothermal treated at 180–400 °C after solid solution treatment (470 °C for 1 h followed by 483 °C for 2 h), the exponent (n) in the Johnson–Mehl–Avrami equation is close to 1 until transformed fraction of new precipitates is up to 60%, indicating that new precipitates first grow into rodlike shape and then coarsen or thicken. When the distance is less than 65 mm from the spray quenching surface of the modified Jominy specimen, the deviation between the predicted and measured hardness is less than 2.7%, confirming the quench factor analysis method as the feasible way to predict the hardness distribution along the thickness direction of 7B50 alloy thick plates. When the distance from the spray quenching surface is 25 mm, the average cooling rate in quench sensitive temperature range is 9.93 °C·s−1, while the quench factor (τ) is 9.89 and the corresponding predicted hardness is HV 185.1 equivalent to 97.3% of the maximum measured hardness of 7B50 alloy in T6 temper. More... »

PAGES

1-8

References to SciGraph publications

  • 1974-01. Kinetics of precipitation in aluminum alloys during continuous cooling in METALLURGICAL TRANSACTIONS A
  • 1993-11. Improved model to predict properties of in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2013-05. Improvement of Quench Factor Analysis in Phase and Hardness Prediction of a Quenched Steel in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2000-08. The Jominy end quench for light-weight alloy development in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • Journal

    TITLE

    Rare Metals

    ISSUE

    N/A

    VOLUME

    N/A

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12598-018-1083-1

    DOI

    http://dx.doi.org/10.1007/s12598-018-1083-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105044621


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Lei", 
            "id": "sg:person.010625457110.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625457110.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yi-Ran", 
            "id": "sg:person.010726436400.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726436400.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Gang", 
            "id": "sg:person.012220420110.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220420110.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Quebec", 
              "id": "https://www.grid.ac/institutes/grid.265695.b", 
              "name": [
                "Department of Applied Science, University of Quebec at Chicoutimi, G7H 2B1, Saguenay, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Kun", 
            "id": "sg:person.013226733325.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226733325.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tian", 
            "givenName": "Ni", 
            "id": "sg:person.01320772533.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320772533.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005020292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2012.11.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006392485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008925406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2013.09.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010300217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(13)62426-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011751383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(07)60175-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011997313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2011.03.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013189636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/174328405x43081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013711093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02646521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015394505", 
              "https://doi.org/10.1007/bf02646521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(11)61170-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015610080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2014.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015955816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.1095.168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017491708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchar.2006.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019231188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/mst.1987.3.11.923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022730604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(08)60008-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024756376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0256(03)00038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026735262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0256(03)00038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026735262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2009.12.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027723151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2015.09.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(98)00615-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030844339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(02)00110-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040257468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-012-1574-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040563151", 
              "https://doi.org/10.1007/s11661-012-1574-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(99)00674-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041975564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2013.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041975829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2006.11.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042627333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105994900770345809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044813743", 
              "https://doi.org/10.1361/105994900770345809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(01)00927-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047546262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(08)60442-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049496485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2006.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049582919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchar.2012.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049676153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/msf.546-549.881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072126088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/msf.706-709.431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072138080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02642924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085584474", 
              "https://doi.org/10.1007/bf02642924"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-21", 
        "datePublishedReg": "2018-06-21", 
        "description": "In the present work, continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests. Besides, the time\u2013temperature\u2013properties (TTP) curves of this alloy were obtained during isothermal treatments. Based on the accurate cooling curves and TTP curves, the hardness distribution along the thickness direction of 7B50 alloy thick plates was predicted by quench factor analysis method. It is found that the quench sensitive temperature range of 7B50 alloy is 240\u2013410 \u00b0C, the nose temperature is 335 \u00b0C, and the incubation period at the nose temperature is about 0.87 s. When 7B50 alloy was isothermal treated at 180\u2013400 \u00b0C after solid solution treatment (470 \u00b0C for 1 h followed by 483 \u00b0C for 2 h), the exponent (n) in the Johnson\u2013Mehl\u2013Avrami equation is close to 1 until transformed fraction of new precipitates is up to 60%, indicating that new precipitates first grow into rodlike shape and then coarsen or thicken. When the distance is less than 65 mm from the spray quenching surface of the modified Jominy specimen, the deviation between the predicted and measured hardness is less than 2.7%, confirming the quench factor analysis method as the feasible way to predict the hardness distribution along the thickness direction of 7B50 alloy thick plates. When the distance from the spray quenching surface is 25 mm, the average cooling rate in quench sensitive temperature range is 9.93 \u00b0C\u00b7s\u22121, while the quench factor (\u03c4) is 9.89 and the corresponding predicted hardness is HV 185.1 equivalent to 97.3% of the maximum measured hardness of 7B50 alloy in T6 temper.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12598-018-1083-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048815", 
            "issn": [
              "1001-0521", 
              "1867-7185"
            ], 
            "name": "Rare Metals", 
            "type": "Periodical"
          }
        ], 
        "name": "Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9a655f9d38683f959cb9917891f5e664e77b56b116b9359038b07661b798a35e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12598-018-1083-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105044621"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12598-018-1083-1", 
          "https://app.dimensions.ai/details/publication/pub.1105044621"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12598-018-1083-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12598-018-1083-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12598-018-1083-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12598-018-1083-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12598-018-1083-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12598-018-1083-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ndb73658b81e8489b93727be50059215d
    4 schema:citation sg:pub.10.1007/bf02642924
    5 sg:pub.10.1007/bf02646521
    6 sg:pub.10.1007/s11661-012-1574-x
    7 sg:pub.10.1361/105994900770345809
    8 https://doi.org/10.1016/j.commatsci.2012.11.024
    9 https://doi.org/10.1016/j.jmatprotec.2004.04.065
    10 https://doi.org/10.1016/j.jmatprotec.2004.04.133
    11 https://doi.org/10.1016/j.jmatprotec.2006.02.007
    12 https://doi.org/10.1016/j.matchar.2006.10.019
    13 https://doi.org/10.1016/j.matchar.2012.01.005
    14 https://doi.org/10.1016/j.matdes.2009.12.038
    15 https://doi.org/10.1016/j.matdes.2011.03.016
    16 https://doi.org/10.1016/j.matdes.2013.09.029
    17 https://doi.org/10.1016/j.matdes.2013.12.002
    18 https://doi.org/10.1016/j.matdes.2015.09.058
    19 https://doi.org/10.1016/j.msea.2006.11.023
    20 https://doi.org/10.1016/j.msea.2014.09.002
    21 https://doi.org/10.1016/s0921-5093(02)00110-7
    22 https://doi.org/10.1016/s0921-5093(98)00615-7
    23 https://doi.org/10.1016/s0921-5093(99)00674-7
    24 https://doi.org/10.1016/s0924-0136(01)00927-x
    25 https://doi.org/10.1016/s0927-0256(03)00038-7
    26 https://doi.org/10.1016/s1003-6326(07)60175-7
    27 https://doi.org/10.1016/s1003-6326(08)60008-4
    28 https://doi.org/10.1016/s1003-6326(08)60442-2
    29 https://doi.org/10.1016/s1003-6326(11)61170-9
    30 https://doi.org/10.1016/s1003-6326(13)62426-7
    31 https://doi.org/10.1179/174328405x43081
    32 https://doi.org/10.1179/mst.1987.3.11.923
    33 https://doi.org/10.4028/www.scientific.net/amr.1095.168
    34 https://doi.org/10.4028/www.scientific.net/msf.546-549.881
    35 https://doi.org/10.4028/www.scientific.net/msf.706-709.431
    36 schema:datePublished 2018-06-21
    37 schema:datePublishedReg 2018-06-21
    38 schema:description In the present work, continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests. Besides, the time–temperature–properties (TTP) curves of this alloy were obtained during isothermal treatments. Based on the accurate cooling curves and TTP curves, the hardness distribution along the thickness direction of 7B50 alloy thick plates was predicted by quench factor analysis method. It is found that the quench sensitive temperature range of 7B50 alloy is 240–410 °C, the nose temperature is 335 °C, and the incubation period at the nose temperature is about 0.87 s. When 7B50 alloy was isothermal treated at 180–400 °C after solid solution treatment (470 °C for 1 h followed by 483 °C for 2 h), the exponent (n) in the Johnson–Mehl–Avrami equation is close to 1 until transformed fraction of new precipitates is up to 60%, indicating that new precipitates first grow into rodlike shape and then coarsen or thicken. When the distance is less than 65 mm from the spray quenching surface of the modified Jominy specimen, the deviation between the predicted and measured hardness is less than 2.7%, confirming the quench factor analysis method as the feasible way to predict the hardness distribution along the thickness direction of 7B50 alloy thick plates. When the distance from the spray quenching surface is 25 mm, the average cooling rate in quench sensitive temperature range is 9.93 °C·s−1, while the quench factor (τ) is 9.89 and the corresponding predicted hardness is HV 185.1 equivalent to 97.3% of the maximum measured hardness of 7B50 alloy in T6 temper.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf sg:journal.1048815
    43 schema:name Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method
    44 schema:pagination 1-8
    45 schema:productId N359f9e33f2f248bf984436326ba39119
    46 N3fd2160094e7417d8b404d941ecb1756
    47 N7dd3226d81f8435ea2f1d1b03cc44f12
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105044621
    49 https://doi.org/10.1007/s12598-018-1083-1
    50 schema:sdDatePublished 2019-04-11T12:40
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N7480e98bbb4c43eab7835dce11eb2a1e
    53 schema:url https://link.springer.com/10.1007%2Fs12598-018-1083-1
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N359f9e33f2f248bf984436326ba39119 schema:name dimensions_id
    58 schema:value pub.1105044621
    59 rdf:type schema:PropertyValue
    60 N3794da366bae4a989c2d97ab45cad4e1 rdf:first sg:person.010726436400.49
    61 rdf:rest Ne837a2cbab374157af62373553100beb
    62 N3fd2160094e7417d8b404d941ecb1756 schema:name readcube_id
    63 schema:value 9a655f9d38683f959cb9917891f5e664e77b56b116b9359038b07661b798a35e
    64 rdf:type schema:PropertyValue
    65 N7480e98bbb4c43eab7835dce11eb2a1e schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N7dd3226d81f8435ea2f1d1b03cc44f12 schema:name doi
    68 schema:value 10.1007/s12598-018-1083-1
    69 rdf:type schema:PropertyValue
    70 Ndb73658b81e8489b93727be50059215d rdf:first sg:person.010625457110.43
    71 rdf:rest N3794da366bae4a989c2d97ab45cad4e1
    72 Ne837a2cbab374157af62373553100beb rdf:first sg:person.012220420110.00
    73 rdf:rest Nf2d5eb02291148c0887fea84fb97fe20
    74 Nf2d5eb02291148c0887fea84fb97fe20 rdf:first sg:person.013226733325.97
    75 rdf:rest Nf3ad2504f5b249d3a0b84ab1aeb8f814
    76 Nf3ad2504f5b249d3a0b84ab1aeb8f814 rdf:first sg:person.01320772533.51
    77 rdf:rest rdf:nil
    78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Engineering
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Materials Engineering
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1048815 schema:issn 1001-0521
    85 1867-7185
    86 schema:name Rare Metals
    87 rdf:type schema:Periodical
    88 sg:person.010625457110.43 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    89 schema:familyName Kang
    90 schema:givenName Lei
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625457110.43
    92 rdf:type schema:Person
    93 sg:person.010726436400.49 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    94 schema:familyName Zhou
    95 schema:givenName Yi-Ran
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726436400.49
    97 rdf:type schema:Person
    98 sg:person.012220420110.00 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    99 schema:familyName Zhao
    100 schema:givenName Gang
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220420110.00
    102 rdf:type schema:Person
    103 sg:person.01320772533.51 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    104 schema:familyName Tian
    105 schema:givenName Ni
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320772533.51
    107 rdf:type schema:Person
    108 sg:person.013226733325.97 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
    109 schema:familyName Liu
    110 schema:givenName Kun
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226733325.97
    112 rdf:type schema:Person
    113 sg:pub.10.1007/bf02642924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085584474
    114 https://doi.org/10.1007/bf02642924
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02646521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015394505
    117 https://doi.org/10.1007/bf02646521
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s11661-012-1574-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040563151
    120 https://doi.org/10.1007/s11661-012-1574-x
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1361/105994900770345809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813743
    123 https://doi.org/10.1361/105994900770345809
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.commatsci.2012.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006392485
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.jmatprotec.2004.04.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008925406
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.jmatprotec.2004.04.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005020292
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.jmatprotec.2006.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049582919
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.matchar.2006.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231188
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.matchar.2012.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049676153
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.matdes.2009.12.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027723151
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.matdes.2011.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013189636
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.matdes.2013.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010300217
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.matdes.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041975829
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.matdes.2015.09.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687545
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.msea.2006.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042627333
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.msea.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015955816
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0921-5093(02)00110-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040257468
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/s0921-5093(98)00615-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844339
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0921-5093(99)00674-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041975564
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0924-0136(01)00927-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047546262
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0927-0256(03)00038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026735262
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/s1003-6326(07)60175-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011997313
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/s1003-6326(08)60008-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024756376
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/s1003-6326(08)60442-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049496485
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/s1003-6326(11)61170-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015610080
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/s1003-6326(13)62426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011751383
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1179/174328405x43081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013711093
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1179/mst.1987.3.11.923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022730604
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.4028/www.scientific.net/amr.1095.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017491708
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.4028/www.scientific.net/msf.546-549.881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072126088
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.4028/www.scientific.net/msf.706-709.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072138080
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.265695.b schema:alternateName University of Quebec
    182 schema:name Department of Applied Science, University of Quebec at Chicoutimi, G7H 2B1, Saguenay, QC, Canada
    183 rdf:type schema:Organization
    184 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
    185 schema:name Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...