Modeling sintering behavior of metal fibers with different fiber angles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Dong-Dong Chen, Zhou-Shun Zheng, Jian-Zhong Wang, Hui-Ping Tang

ABSTRACT

The formation of sintering necks between two metal fibers was investigated using the oval–oval model with respect to the fiber angle range of 0°–90°. Surface diffusion was assumed to be the predominant mechanism in every section of the junction of two metal fibers in this model, which was addressed numerically using the level-set method. The growth rates of the sintering necks in the direction of the bisector of obtuse angle, the bisector of acute angle and the fiber axis were discussed in detail. It is found that the growth rate of the sintering necks decreases with fiber angle increasing in the direction of the fiber axis and the bisector of acute angle. However, an opposite variation in growth rate of sintering necks can be found in the direction of the bisector of obtuse angle. The numerical simulation results show that the growth rate of the sintering necks is significantly affected by the initial local geometrical structure which is determined by the fiber angle. The oval–oval model based on level-set method is proposed to simulate the growth process of sintering necks between two metal fibers with respect to the fiber angle range of 0°–90°. According to the simulation results, the influences of initial local geometrical structure and the initial evolution speed on the growth rate of the sintering necks are investigated. More... »

PAGES

886-893

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12598-016-0749-9

DOI

http://dx.doi.org/10.1007/s12598-016-0749-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051558553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mathematics and Statistics, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Dong-Dong", 
        "id": "sg:person.016715272446.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715272446.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mathematics and Statistics, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Zhou-Shun", 
        "id": "sg:person.011001410021.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001410021.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jian-Zhong", 
        "id": "sg:person.013030222423.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030222423.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Hui-Ping", 
        "id": "sg:person.011021644335.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011021644335.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1359-6462(96)00329-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010130198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-014-9101-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010217007", 
          "https://doi.org/10.1007/s11831-014-9101-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(95)00115-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010478666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(95)00115-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010478666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12598-014-0388-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011347316", 
          "https://doi.org/10.1007/s12598-014-0388-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(13)62565-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014065216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00544686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020742360", 
          "https://doi.org/10.1007/bf00544686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00544686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020742360", 
          "https://doi.org/10.1007/bf00544686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00445-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024801252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00445-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024801252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(97)00337-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025202014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1998.6090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026468687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2005.05.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030716127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036300795", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036300795", 
          "https://doi.org/10.1007/b98879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036300795", 
          "https://doi.org/10.1007/b98879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2001.6760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040251645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(07)60220-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040804662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00560333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667724", 
          "https://doi.org/10.1007/bf00560333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00560333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667724", 
          "https://doi.org/10.1007/bf00560333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11106-008-9019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048170598", 
          "https://doi.org/10.1007/s11106-008-9019-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11106-008-9001-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050327572", 
          "https://doi.org/10.1007/s11106-008-9001-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12598-009-0030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053483152", 
          "https://doi.org/10.1007/s12598-009-0030-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12598-009-0030-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053483152", 
          "https://doi.org/10.1007/s12598-009-0030-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1722742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057789717"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "The formation of sintering necks between two metal fibers was investigated using the oval\u2013oval model with respect to the fiber angle range of 0\u00b0\u201390\u00b0. Surface diffusion was assumed to be the predominant mechanism in every section of the junction of two metal fibers in this model, which was addressed numerically using the level-set method. The growth rates of the sintering necks in the direction of the bisector of obtuse angle, the bisector of acute angle and the fiber axis were discussed in detail. It is found that the growth rate of the sintering necks decreases with fiber angle increasing in the direction of the fiber axis and the bisector of acute angle. However, an opposite variation in growth rate of sintering necks can be found in the direction of the bisector of obtuse angle. The numerical simulation results show that the growth rate of the sintering necks is significantly affected by the initial local geometrical structure which is determined by the fiber angle. The oval\u2013oval model based on level-set method is proposed to simulate the growth process of sintering necks between two metal fibers with respect to the fiber angle range of 0\u00b0\u201390\u00b0. According to the simulation results, the influences of initial local geometrical structure and the initial evolution speed on the growth rate of the sintering necks are investigated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12598-016-0749-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7019754", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7182211", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048815", 
        "issn": [
          "1001-0521", 
          "1867-7185"
        ], 
        "name": "Rare Metals", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Modeling sintering behavior of metal fibers with different fiber angles", 
    "pagination": "886-893", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f59a1ee811c06a524f2fdcfe1bc937f062b3f2ea41f93631bfa73fe0927585ff"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12598-016-0749-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051558553"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12598-016-0749-9", 
      "https://app.dimensions.ai/details/publication/pub.1051558553"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s12598-016-0749-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12598-016-0749-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12598-016-0749-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12598-016-0749-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12598-016-0749-9'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12598-016-0749-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbc417566c5034452ab37e15258c2d98e
4 schema:citation sg:pub.10.1007/b98879
5 sg:pub.10.1007/bf00544686
6 sg:pub.10.1007/bf00560333
7 sg:pub.10.1007/s11106-008-9001-y
8 sg:pub.10.1007/s11106-008-9019-1
9 sg:pub.10.1007/s11831-014-9101-4
10 sg:pub.10.1007/s12598-009-0030-6
11 sg:pub.10.1007/s12598-014-0388-y
12 https://app.dimensions.ai/details/publication/pub.1036300795
13 https://doi.org/10.1006/jcph.1998.6090
14 https://doi.org/10.1006/jcph.2001.6760
15 https://doi.org/10.1016/0956-7151(95)00115-c
16 https://doi.org/10.1016/j.compscitech.2005.05.037
17 https://doi.org/10.1016/s0043-1648(03)00445-9
18 https://doi.org/10.1016/s1003-6326(07)60220-9
19 https://doi.org/10.1016/s1003-6326(13)62565-0
20 https://doi.org/10.1016/s1359-6454(97)00337-6
21 https://doi.org/10.1016/s1359-6462(96)00329-6
22 https://doi.org/10.1063/1.1722742
23 schema:datePublished 2018-10
24 schema:datePublishedReg 2018-10-01
25 schema:description The formation of sintering necks between two metal fibers was investigated using the oval–oval model with respect to the fiber angle range of 0°–90°. Surface diffusion was assumed to be the predominant mechanism in every section of the junction of two metal fibers in this model, which was addressed numerically using the level-set method. The growth rates of the sintering necks in the direction of the bisector of obtuse angle, the bisector of acute angle and the fiber axis were discussed in detail. It is found that the growth rate of the sintering necks decreases with fiber angle increasing in the direction of the fiber axis and the bisector of acute angle. However, an opposite variation in growth rate of sintering necks can be found in the direction of the bisector of obtuse angle. The numerical simulation results show that the growth rate of the sintering necks is significantly affected by the initial local geometrical structure which is determined by the fiber angle. The oval–oval model based on level-set method is proposed to simulate the growth process of sintering necks between two metal fibers with respect to the fiber angle range of 0°–90°. According to the simulation results, the influences of initial local geometrical structure and the initial evolution speed on the growth rate of the sintering necks are investigated.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N374ba78948814679930a8359e1cf7813
30 Ndeeb33784d564e92bc72f72c1a2e419a
31 sg:journal.1048815
32 schema:name Modeling sintering behavior of metal fibers with different fiber angles
33 schema:pagination 886-893
34 schema:productId N08b68e850e9649189566e7fdb3d589d7
35 N1a3375107e9445bcba1f1ee94a064389
36 Nf66c8d730e144763be96dbf8a01c4d81
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051558553
38 https://doi.org/10.1007/s12598-016-0749-9
39 schema:sdDatePublished 2019-04-10T14:58
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ndd07559c9f104fd286faafa246cb8ef7
42 schema:url http://link.springer.com/10.1007/s12598-016-0749-9
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N08b68e850e9649189566e7fdb3d589d7 schema:name doi
47 schema:value 10.1007/s12598-016-0749-9
48 rdf:type schema:PropertyValue
49 N1a3375107e9445bcba1f1ee94a064389 schema:name dimensions_id
50 schema:value pub.1051558553
51 rdf:type schema:PropertyValue
52 N308e6a727cc84b51ba80085128cd3d6c rdf:first sg:person.011021644335.27
53 rdf:rest rdf:nil
54 N374ba78948814679930a8359e1cf7813 schema:issueNumber 10
55 rdf:type schema:PublicationIssue
56 N727d12e8a49a41ce9aa196d09376088d rdf:first sg:person.011001410021.41
57 rdf:rest Nc9a1f906fd81477089f6a116c4df10f2
58 Nbc417566c5034452ab37e15258c2d98e rdf:first sg:person.016715272446.11
59 rdf:rest N727d12e8a49a41ce9aa196d09376088d
60 Nc9a1f906fd81477089f6a116c4df10f2 rdf:first sg:person.013030222423.12
61 rdf:rest N308e6a727cc84b51ba80085128cd3d6c
62 Ndd07559c9f104fd286faafa246cb8ef7 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ndeeb33784d564e92bc72f72c1a2e419a schema:volumeNumber 37
65 rdf:type schema:PublicationVolume
66 Nf66c8d730e144763be96dbf8a01c4d81 schema:name readcube_id
67 schema:value f59a1ee811c06a524f2fdcfe1bc937f062b3f2ea41f93631bfa73fe0927585ff
68 rdf:type schema:PropertyValue
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
73 schema:name Materials Engineering
74 rdf:type schema:DefinedTerm
75 sg:grant.7019754 http://pending.schema.org/fundedItem sg:pub.10.1007/s12598-016-0749-9
76 rdf:type schema:MonetaryGrant
77 sg:grant.7182211 http://pending.schema.org/fundedItem sg:pub.10.1007/s12598-016-0749-9
78 rdf:type schema:MonetaryGrant
79 sg:journal.1048815 schema:issn 1001-0521
80 1867-7185
81 schema:name Rare Metals
82 rdf:type schema:Periodical
83 sg:person.011001410021.41 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
84 schema:familyName Zheng
85 schema:givenName Zhou-Shun
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001410021.41
87 rdf:type schema:Person
88 sg:person.011021644335.27 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
89 schema:familyName Tang
90 schema:givenName Hui-Ping
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011021644335.27
92 rdf:type schema:Person
93 sg:person.013030222423.12 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
94 schema:familyName Wang
95 schema:givenName Jian-Zhong
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030222423.12
97 rdf:type schema:Person
98 sg:person.016715272446.11 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
99 schema:familyName Chen
100 schema:givenName Dong-Dong
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715272446.11
102 rdf:type schema:Person
103 sg:pub.10.1007/b98879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036300795
104 https://doi.org/10.1007/b98879
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00544686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020742360
107 https://doi.org/10.1007/bf00544686
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00560333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045667724
110 https://doi.org/10.1007/bf00560333
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11106-008-9001-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050327572
113 https://doi.org/10.1007/s11106-008-9001-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11106-008-9019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048170598
116 https://doi.org/10.1007/s11106-008-9019-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11831-014-9101-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010217007
119 https://doi.org/10.1007/s11831-014-9101-4
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s12598-009-0030-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053483152
122 https://doi.org/10.1007/s12598-009-0030-6
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s12598-014-0388-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011347316
125 https://doi.org/10.1007/s12598-014-0388-y
126 rdf:type schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1036300795 schema:CreativeWork
128 https://doi.org/10.1006/jcph.1998.6090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026468687
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jcph.2001.6760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040251645
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0956-7151(95)00115-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1010478666
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.compscitech.2005.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030716127
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0043-1648(03)00445-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024801252
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1003-6326(07)60220-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040804662
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1003-6326(13)62565-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014065216
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s1359-6454(97)00337-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025202014
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1359-6462(96)00329-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010130198
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.1722742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789717
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
149 schema:name School of Mathematics and Statistics, Central South University, 410083, Changsha, China
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.464401.3 schema:alternateName Northwest Institute For Non-Ferrous Metal Research
152 schema:name State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, 710016, Xi’an, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...