ABC classification according to Pareto’s principle: a hybrid methodology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

Siamak Kheybari, S. Ali Naji, Fariba Mahdi Rezaie, Reza Salehpour

ABSTRACT

So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto’s principle. In this study, a number of hybrid methodologies including Shannon’s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto’s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto’s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method. More... »

PAGES

1-24

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4

DOI

http://dx.doi.org/10.1007/s12597-019-00365-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112520117


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kheybari", 
        "givenName": "Siamak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naji", 
        "givenName": "S. Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezaie", 
        "givenName": "Fariba Mahdi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sharif University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412553.4", 
          "name": [
            "Department of Physics, Sharif University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salehpour", 
        "givenName": "Reza", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2005.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000631042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11135-006-9040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002740857", 
          "https://doi.org/10.1007/s11135-006-9040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0272-6963(87)90008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002823359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003522084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-5273(94)90095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004276794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(97)00039-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.10.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010002526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb054765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012847904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014949815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015090531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2012.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024004874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/645746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024092797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46854-4_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024682708", 
          "https://doi.org/10.1007/978-3-642-46854-4_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2016.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026002650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540903348361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026724840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030374732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031775885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/ijfsa.2012100105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031789326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031973209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2004.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033575984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540600847145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037055216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038061170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(92)90021-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038615687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2011.560201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042568537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.01.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043486554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2008.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050075014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijise.2013.052922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067466440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/yjor1002293r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069362156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5267/j.ijiec.2012.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072734115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2015.7489161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094668930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3232174.3232183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106090074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3232174.3232183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106090074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24200/sci.2018.5539.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106240036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto\u2019s principle. In this study, a number of hybrid methodologies including Shannon\u2019s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto\u2019s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto\u2019s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12597-019-00365-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136345", 
        "issn": [
          "0030-3887", 
          "0975-0320"
        ], 
        "name": "OPSEARCH", 
        "type": "Periodical"
      }
    ], 
    "name": "ABC classification according to Pareto\u2019s principle: a hybrid methodology", 
    "pagination": "1-24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e49be07b0f25d3bf665d6aa2c78c066bd14cf3470e50b70e14343004e7df5710"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12597-019-00365-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112520117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12597-019-00365-4", 
      "https://app.dimensions.ai/details/publication/pub.1112520117"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12597-019-00365-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12597-019-00365-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf1afb7002f80487a822ca36fabb6ca79
4 schema:citation sg:pub.10.1007/978-3-642-46854-4_13
5 sg:pub.10.1007/s11135-006-9040-8
6 https://doi.org/10.1016/0272-6963(87)90008-8
7 https://doi.org/10.1016/0895-7177(92)90021-c
8 https://doi.org/10.1016/0925-5273(94)90095-7
9 https://doi.org/10.1016/j.cie.2008.03.006
10 https://doi.org/10.1016/j.cie.2012.04.011
11 https://doi.org/10.1016/j.cie.2013.12.011
12 https://doi.org/10.1016/j.cie.2014.07.020
13 https://doi.org/10.1016/j.cie.2016.06.004
14 https://doi.org/10.1016/j.cor.2004.07.014
15 https://doi.org/10.1016/j.ejor.2005.11.018
16 https://doi.org/10.1016/j.ejor.2006.08.052
17 https://doi.org/10.1016/j.ejor.2009.04.013
18 https://doi.org/10.1016/j.eswa.2010.08.119
19 https://doi.org/10.1016/j.eswa.2010.08.127
20 https://doi.org/10.1016/j.eswa.2010.10.046
21 https://doi.org/10.1016/j.eswa.2011.01.127
22 https://doi.org/10.1016/j.ijpe.2008.02.017
23 https://doi.org/10.1016/j.ijpe.2014.05.015
24 https://doi.org/10.1016/j.jmatprotec.2008.02.006
25 https://doi.org/10.1016/s0377-2217(97)00039-8
26 https://doi.org/10.1080/00207540600847145
27 https://doi.org/10.1080/00207540903348361
28 https://doi.org/10.1080/00207543.2011.560201
29 https://doi.org/10.1108/eb054765
30 https://doi.org/10.1109/isda.2015.7489161
31 https://doi.org/10.1145/3232174.3232183
32 https://doi.org/10.1155/2015/645746
33 https://doi.org/10.1504/ijise.2013.052922
34 https://doi.org/10.2298/yjor1002293r
35 https://doi.org/10.24200/sci.2018.5539.1332
36 https://doi.org/10.4018/ijfsa.2012100105
37 https://doi.org/10.5267/j.ijiec.2012.03.003
38 schema:datePublished 2019-03-04
39 schema:datePublishedReg 2019-03-04
40 schema:description So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto’s principle. In this study, a number of hybrid methodologies including Shannon’s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto’s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto’s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1136345
45 schema:name ABC classification according to Pareto’s principle: a hybrid methodology
46 schema:pagination 1-24
47 schema:productId N1f056a6400fb4658a8a3c6f8f50eabb9
48 N5ecdcd92b41c40909e823ae1477bc568
49 Nbfbfdd04b22d448393689e0a24b8a4fe
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112520117
51 https://doi.org/10.1007/s12597-019-00365-4
52 schema:sdDatePublished 2019-04-11T11:04
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N440645773d1446e0a75c79a298870915
55 schema:url https://link.springer.com/10.1007%2Fs12597-019-00365-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1f056a6400fb4658a8a3c6f8f50eabb9 schema:name doi
60 schema:value 10.1007/s12597-019-00365-4
61 rdf:type schema:PropertyValue
62 N394c9832bd1b423e8e2ad5d2164debde rdf:first Na144ea3e77e7480f97c84629b6056471
63 rdf:rest rdf:nil
64 N3bf731650291462cab182cedce4017d0 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
65 schema:familyName Kheybari
66 schema:givenName Siamak
67 rdf:type schema:Person
68 N440645773d1446e0a75c79a298870915 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N5170492ebd3d441d9ac1463140f6ddc7 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
71 schema:familyName Rezaie
72 schema:givenName Fariba Mahdi
73 rdf:type schema:Person
74 N5ecdcd92b41c40909e823ae1477bc568 schema:name dimensions_id
75 schema:value pub.1112520117
76 rdf:type schema:PropertyValue
77 N91a686892d7e4f7184ead3f219a5b29e rdf:first N5170492ebd3d441d9ac1463140f6ddc7
78 rdf:rest N394c9832bd1b423e8e2ad5d2164debde
79 N9572cf5bf8364279a8f543930d5f6687 rdf:first Na47ce0caea734e3e979498b6a82042ef
80 rdf:rest N91a686892d7e4f7184ead3f219a5b29e
81 Na144ea3e77e7480f97c84629b6056471 schema:affiliation https://www.grid.ac/institutes/grid.412553.4
82 schema:familyName Salehpour
83 schema:givenName Reza
84 rdf:type schema:Person
85 Na47ce0caea734e3e979498b6a82042ef schema:affiliation https://www.grid.ac/institutes/grid.411301.6
86 schema:familyName Naji
87 schema:givenName S. Ali
88 rdf:type schema:Person
89 Nbfbfdd04b22d448393689e0a24b8a4fe schema:name readcube_id
90 schema:value e49be07b0f25d3bf665d6aa2c78c066bd14cf3470e50b70e14343004e7df5710
91 rdf:type schema:PropertyValue
92 Nf1afb7002f80487a822ca36fabb6ca79 rdf:first N3bf731650291462cab182cedce4017d0
93 rdf:rest N9572cf5bf8364279a8f543930d5f6687
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1136345 schema:issn 0030-3887
101 0975-0320
102 schema:name OPSEARCH
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-3-642-46854-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024682708
105 https://doi.org/10.1007/978-3-642-46854-4_13
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11135-006-9040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002740857
108 https://doi.org/10.1007/s11135-006-9040-8
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0272-6963(87)90008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002823359
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0895-7177(92)90021-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615687
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0925-5273(94)90095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004276794
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cie.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031775885
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cie.2012.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024004874
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cie.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038061170
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cie.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003522084
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cie.2016.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026002650
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cor.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033575984
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejor.2005.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000631042
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ejor.2006.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031973209
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ejor.2009.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207891
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2010.08.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014949815
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2010.08.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030374732
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2010.10.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010002526
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2011.01.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723272
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijpe.2008.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075014
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijpe.2014.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043486554
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmatprotec.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090531
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0377-2217(97)00039-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078726
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/00207540600847145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037055216
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/00207540903348361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026724840
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/00207543.2011.560201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042568537
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1108/eb054765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012847904
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/isda.2015.7489161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094668930
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/3232174.3232183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106090074
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1155/2015/645746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024092797
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1504/ijise.2013.052922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067466440
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2298/yjor1002293r schema:sameAs https://app.dimensions.ai/details/publication/pub.1069362156
167 rdf:type schema:CreativeWork
168 https://doi.org/10.24200/sci.2018.5539.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106240036
169 rdf:type schema:CreativeWork
170 https://doi.org/10.4018/ijfsa.2012100105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031789326
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5267/j.ijiec.2012.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072734115
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
175 schema:name Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.412553.4 schema:alternateName Sharif University of Technology
178 schema:name Department of Physics, Sharif University of Technology, Tehran, Iran
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...