ABC classification according to Pareto’s principle: a hybrid methodology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

Siamak Kheybari, S. Ali Naji, Fariba Mahdi Rezaie, Reza Salehpour

ABSTRACT

So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto’s principle. In this study, a number of hybrid methodologies including Shannon’s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto’s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto’s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method. More... »

PAGES

1-24

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4

DOI

http://dx.doi.org/10.1007/s12597-019-00365-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112520117


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kheybari", 
        "givenName": "Siamak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naji", 
        "givenName": "S. Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezaie", 
        "givenName": "Fariba Mahdi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sharif University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412553.4", 
          "name": [
            "Department of Physics, Sharif University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salehpour", 
        "givenName": "Reza", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2005.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000631042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11135-006-9040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002740857", 
          "https://doi.org/10.1007/s11135-006-9040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0272-6963(87)90008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002823359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003522084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-5273(94)90095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004276794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(97)00039-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.10.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010002526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb054765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012847904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014949815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015090531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2012.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024004874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/645746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024092797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46854-4_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024682708", 
          "https://doi.org/10.1007/978-3-642-46854-4_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2016.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026002650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540903348361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026724840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030374732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031775885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/ijfsa.2012100105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031789326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031973209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2004.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033575984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540600847145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037055216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038061170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(92)90021-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038615687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2011.560201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042568537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.01.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043486554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2008.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050075014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijise.2013.052922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067466440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/yjor1002293r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069362156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5267/j.ijiec.2012.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072734115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2015.7489161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094668930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3232174.3232183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106090074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3232174.3232183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106090074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24200/sci.2018.5539.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106240036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto\u2019s principle. In this study, a number of hybrid methodologies including Shannon\u2019s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto\u2019s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto\u2019s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12597-019-00365-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136345", 
        "issn": [
          "0030-3887", 
          "0975-0320"
        ], 
        "name": "OPSEARCH", 
        "type": "Periodical"
      }
    ], 
    "name": "ABC classification according to Pareto\u2019s principle: a hybrid methodology", 
    "pagination": "1-24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e49be07b0f25d3bf665d6aa2c78c066bd14cf3470e50b70e14343004e7df5710"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12597-019-00365-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112520117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12597-019-00365-4", 
      "https://app.dimensions.ai/details/publication/pub.1112520117"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12597-019-00365-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12597-019-00365-4'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12597-019-00365-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbd38d6311fb646cfaae0d31d1e543c97
4 schema:citation sg:pub.10.1007/978-3-642-46854-4_13
5 sg:pub.10.1007/s11135-006-9040-8
6 https://doi.org/10.1016/0272-6963(87)90008-8
7 https://doi.org/10.1016/0895-7177(92)90021-c
8 https://doi.org/10.1016/0925-5273(94)90095-7
9 https://doi.org/10.1016/j.cie.2008.03.006
10 https://doi.org/10.1016/j.cie.2012.04.011
11 https://doi.org/10.1016/j.cie.2013.12.011
12 https://doi.org/10.1016/j.cie.2014.07.020
13 https://doi.org/10.1016/j.cie.2016.06.004
14 https://doi.org/10.1016/j.cor.2004.07.014
15 https://doi.org/10.1016/j.ejor.2005.11.018
16 https://doi.org/10.1016/j.ejor.2006.08.052
17 https://doi.org/10.1016/j.ejor.2009.04.013
18 https://doi.org/10.1016/j.eswa.2010.08.119
19 https://doi.org/10.1016/j.eswa.2010.08.127
20 https://doi.org/10.1016/j.eswa.2010.10.046
21 https://doi.org/10.1016/j.eswa.2011.01.127
22 https://doi.org/10.1016/j.ijpe.2008.02.017
23 https://doi.org/10.1016/j.ijpe.2014.05.015
24 https://doi.org/10.1016/j.jmatprotec.2008.02.006
25 https://doi.org/10.1016/s0377-2217(97)00039-8
26 https://doi.org/10.1080/00207540600847145
27 https://doi.org/10.1080/00207540903348361
28 https://doi.org/10.1080/00207543.2011.560201
29 https://doi.org/10.1108/eb054765
30 https://doi.org/10.1109/isda.2015.7489161
31 https://doi.org/10.1145/3232174.3232183
32 https://doi.org/10.1155/2015/645746
33 https://doi.org/10.1504/ijise.2013.052922
34 https://doi.org/10.2298/yjor1002293r
35 https://doi.org/10.24200/sci.2018.5539.1332
36 https://doi.org/10.4018/ijfsa.2012100105
37 https://doi.org/10.5267/j.ijiec.2012.03.003
38 schema:datePublished 2019-03-04
39 schema:datePublishedReg 2019-03-04
40 schema:description So far, many methods have been proposed to classify items based on ABC analysis, but the results of these methods have had relatively low compliance with the principles of ABC. More precisely, collective value and sometimes the number of items belonging to each category in the methods provided do not meet the basic requirements of ABC called Pareto’s principle. In this study, a number of hybrid methodologies including Shannon’s entropy, TOPSIS (the technique for order preference by similarity to ideal solution) and goal programming are respectively used for determining the weight of criteria which are effective in the inventory items classification, calculations of each item value and its classification based on Pareto’s principle. To this end, the value of each item as well as classification of inventory items is calculated based on Pareto’s principle. The performance of the proposed method is evaluated through (1) statistical analysis, (2) checking the percentage of similarity with other methods and (3) comparison with another method in terms of the number and value allocated to each class. The results confirm the capability of the listed method.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1136345
45 schema:name ABC classification according to Pareto’s principle: a hybrid methodology
46 schema:pagination 1-24
47 schema:productId Nb3d0868140d74aaa833dfd265cfcc1df
48 Nb9c5cffefde145db9bdc6bc6a1d5c5f0
49 Ne8b64ef17fbe4ecba6cebba37fb914e6
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112520117
51 https://doi.org/10.1007/s12597-019-00365-4
52 schema:sdDatePublished 2019-04-11T11:04
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N49f321cb25b84298b636229900993083
55 schema:url https://link.springer.com/10.1007%2Fs12597-019-00365-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N03a827ae3e3a42dbbc7607d4fae92d0e rdf:first Na5096efe811f445282d7065e7d766e1c
60 rdf:rest Nec6b199221354e138627b70164d351b9
61 N099c2de0938d4f60bfa0ad6f88fca7b5 rdf:first N5d6d1c7527c84539af66448d6f030617
62 rdf:rest N03a827ae3e3a42dbbc7607d4fae92d0e
63 N49f321cb25b84298b636229900993083 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N5d6d1c7527c84539af66448d6f030617 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
66 schema:familyName Naji
67 schema:givenName S. Ali
68 rdf:type schema:Person
69 N64233935ee9b48dfb6b422749669820a schema:affiliation https://www.grid.ac/institutes/grid.411301.6
70 schema:familyName Kheybari
71 schema:givenName Siamak
72 rdf:type schema:Person
73 N9359a2bd344e4eec8c49c9b68a122836 schema:affiliation https://www.grid.ac/institutes/grid.412553.4
74 schema:familyName Salehpour
75 schema:givenName Reza
76 rdf:type schema:Person
77 Na5096efe811f445282d7065e7d766e1c schema:affiliation https://www.grid.ac/institutes/grid.411301.6
78 schema:familyName Rezaie
79 schema:givenName Fariba Mahdi
80 rdf:type schema:Person
81 Nb3d0868140d74aaa833dfd265cfcc1df schema:name dimensions_id
82 schema:value pub.1112520117
83 rdf:type schema:PropertyValue
84 Nb9c5cffefde145db9bdc6bc6a1d5c5f0 schema:name readcube_id
85 schema:value e49be07b0f25d3bf665d6aa2c78c066bd14cf3470e50b70e14343004e7df5710
86 rdf:type schema:PropertyValue
87 Nbd38d6311fb646cfaae0d31d1e543c97 rdf:first N64233935ee9b48dfb6b422749669820a
88 rdf:rest N099c2de0938d4f60bfa0ad6f88fca7b5
89 Ne8b64ef17fbe4ecba6cebba37fb914e6 schema:name doi
90 schema:value 10.1007/s12597-019-00365-4
91 rdf:type schema:PropertyValue
92 Nec6b199221354e138627b70164d351b9 rdf:first N9359a2bd344e4eec8c49c9b68a122836
93 rdf:rest rdf:nil
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1136345 schema:issn 0030-3887
101 0975-0320
102 schema:name OPSEARCH
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-3-642-46854-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024682708
105 https://doi.org/10.1007/978-3-642-46854-4_13
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11135-006-9040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002740857
108 https://doi.org/10.1007/s11135-006-9040-8
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0272-6963(87)90008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002823359
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0895-7177(92)90021-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615687
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0925-5273(94)90095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004276794
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cie.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031775885
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cie.2012.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024004874
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cie.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038061170
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cie.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003522084
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cie.2016.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026002650
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cor.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033575984
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejor.2005.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000631042
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ejor.2006.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031973209
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ejor.2009.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207891
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2010.08.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014949815
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2010.08.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030374732
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2010.10.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010002526
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2011.01.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723272
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijpe.2008.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075014
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijpe.2014.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043486554
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmatprotec.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090531
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0377-2217(97)00039-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078726
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/00207540600847145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037055216
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/00207540903348361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026724840
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/00207543.2011.560201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042568537
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1108/eb054765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012847904
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/isda.2015.7489161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094668930
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/3232174.3232183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106090074
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1155/2015/645746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024092797
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1504/ijise.2013.052922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067466440
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2298/yjor1002293r schema:sameAs https://app.dimensions.ai/details/publication/pub.1069362156
167 rdf:type schema:CreativeWork
168 https://doi.org/10.24200/sci.2018.5539.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106240036
169 rdf:type schema:CreativeWork
170 https://doi.org/10.4018/ijfsa.2012100105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031789326
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5267/j.ijiec.2012.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072734115
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
175 schema:name Department of Management, Ferdowsi University of Mashhad, Mashhad, Iran
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.412553.4 schema:alternateName Sharif University of Technology
178 schema:name Department of Physics, Sharif University of Technology, Tehran, Iran
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...