Evaluation of Water Quality Based on a Machine Learning Algorithm and Water Quality Index for Mid Gangetic Region (South Bihar ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-07

AUTHORS

Amar Nath Gupta, Deepak Kumar, Anshuman Singh

ABSTRACT

Water quality index (WQI) is an indicator of the quality of any ground water storage in the form of a single number representing a combination of different water quality parameter Different parameters like that pH, total dissolved solids (TDS), electrical conductivity (ECE), nitrate, sulphate, total hardness, calcium hardness, magnesium hardness, etc. are critical to assess the WQI. Additionally, the precision in the prediction of this parameter affects the quality of the result. In this research, Extreme Learning Model (ELM) and three hybrid variants of the same model, namely, RBF-ELM, Online Sequencing-ELM (OS-ELM), Biogeography-based optimization-ELM (BBO-ELM) were tested for the prediction of WQI for ground water quality. A time series river water quality dataset was used to develop and test the models. The performance of the proposed models are evaluated using various fitness indices such as, the correlation of coefficient (r), root mean square error (RMSE), Kling-Gupta Efficiency (KGE), the index of agreement (d). Based on the comparisons, BBO-ELM was indicated as a possible alternative or substitute to assist the water quality assessment for the groundwater and can be readily applied an efficient data-driven methodology. BBO-ELM emerged as the better generalized hybrid model for calculating WQI. More... »

PAGES

1063-1072

References to SciGraph publications

  • 2009. Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India in E-JOURNAL OF CHEMISTRY
  • 2019-12-03. Multivariate water quality analysis of Lake Cajititlán, Mexico in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2013-09. Development of Water Quality Index (WQI) model for the groundwater in Tirupur district, South India in ACTA GEOCHIMICA
  • 2011-12-22. Prediction of Water Quality Index Using Neuro Fuzzy Inference System in EXPOSURE AND HEALTH
  • 2017-05-30. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2009-01-06. Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India in ENVIRONMENTAL EARTH SCIENCES
  • 2010-01-21. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2017-07-28. Groundwater quality assessment for drinking purpose in Raipur city, Chhattisgarh using water quality index and geographic information system in JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
  • 2018-10-06. Using spatial statistics to identify the uranium hotspot in groundwater in the mid-eastern Gangetic plain, India in ENVIRONMENTAL EARTH SCIENCES
  • 2009-06-20. Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2009-09-25. Water quality assessment of Wei River, China using fuzzy synthetic evaluation in ENVIRONMENTAL EARTH SCIENCES
  • 2019-05-21. Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain, India in ARABIAN JOURNAL OF GEOSCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12594-021-1821-0

    DOI

    http://dx.doi.org/10.1007/s12594-021-1821-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140944162


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Amar Nath", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Deepak", 
            "id": "sg:person.012055724152.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055724152.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India", 
              "id": "http://www.grid.ac/institutes/grid.419487.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Anshuman", 
            "id": "sg:person.0723617476.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723617476.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1155/2009/757424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027167622", 
              "https://doi.org/10.1155/2009/757424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11631-013-0631-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027030219", 
              "https://doi.org/10.1007/s11631-013-0631-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-009-0303-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017456512", 
              "https://doi.org/10.1007/s12665-009-0303-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-019-4519-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115144941", 
              "https://doi.org/10.1007/s12517-019-4519-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-017-0665-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090832828", 
              "https://doi.org/10.1007/s12594-017-0665-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-9283-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085716353", 
              "https://doi.org/10.1007/s11356-017-9283-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-011-0054-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001513483", 
              "https://doi.org/10.1007/s12403-011-0054-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-009-1302-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008951046", 
              "https://doi.org/10.1007/s10661-009-1302-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-008-1652-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021649958", 
              "https://doi.org/10.1007/s00254-008-1652-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-019-7972-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123117699", 
              "https://doi.org/10.1007/s10661-019-7972-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-018-7889-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107437511", 
              "https://doi.org/10.1007/s12665-018-7889-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-009-1031-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052016926", 
              "https://doi.org/10.1007/s10661-009-1031-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-07", 
        "datePublishedReg": "2021-09-07", 
        "description": "Water quality index (WQI) is an indicator of the quality of any ground water storage in the form of a single number representing a combination of different water quality parameter Different parameters like that pH, total dissolved solids (TDS), electrical conductivity (ECE), nitrate, sulphate, total hardness, calcium hardness, magnesium hardness, etc. are critical to assess the WQI. Additionally, the precision in the prediction of this parameter affects the quality of the result. In this research, Extreme Learning Model (ELM) and three hybrid variants of the same model, namely, RBF-ELM, Online Sequencing-ELM (OS-ELM), Biogeography-based optimization-ELM (BBO-ELM) were tested for the prediction of WQI for ground water quality. A time series river water quality dataset was used to develop and test the models. The performance of the proposed models are evaluated using various fitness indices such as, the correlation of coefficient (r), root mean square error (RMSE), Kling-Gupta Efficiency (KGE), the index of agreement (d). Based on the comparisons, BBO-ELM was indicated as a possible alternative or substitute to assist the water quality assessment for the groundwater and can be readily applied an efficient data-driven methodology. BBO-ELM emerged as the better generalized hybrid model for calculating WQI.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12594-021-1821-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136575", 
            "issn": [
              "0016-7622", 
              "0974-6889"
            ], 
            "name": "Journal of the Geological Society of India", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "97"
          }
        ], 
        "keywords": [
          "Kling\u2013Gupta efficiency", 
          "extreme learning model", 
          "total dissolved solids", 
          "root mean square error", 
          "ground water storage", 
          "water quality index", 
          "electrical conductivity", 
          "ground water quality", 
          "water quality", 
          "hardness", 
          "water storage", 
          "correlation of coefficient", 
          "different parameters", 
          "data-driven methodology", 
          "mean square error", 
          "dissolved solids", 
          "square error", 
          "water quality dataset", 
          "calcium hardness", 
          "water quality assessment", 
          "hybrid model", 
          "index of agreement", 
          "conductivity", 
          "parameters", 
          "magnesium hardness", 
          "Quality Index", 
          "prediction", 
          "possible alternative", 
          "solids", 
          "model", 
          "total hardness", 
          "hybrid variants", 
          "efficiency", 
          "performance", 
          "coefficient", 
          "storage", 
          "quality datasets", 
          "same model", 
          "error", 
          "quality", 
          "groundwater", 
          "agreement", 
          "methodology", 
          "Machine Learning Algorithms", 
          "precision", 
          "substitute", 
          "nitrate", 
          "algorithm", 
          "results", 
          "alternative", 
          "quality assessment", 
          "comparison", 
          "learning algorithm", 
          "combination", 
          "single number", 
          "index", 
          "sulfate", 
          "region", 
          "evaluation", 
          "number", 
          "research", 
          "Gangetic region", 
          "assessment", 
          "form", 
          "correlation", 
          "indicators", 
          "dataset", 
          "learning model", 
          "India", 
          "fitness index", 
          "variants", 
          "biogeography", 
          "RBF-ELM", 
          "different water quality parameter Different parameters", 
          "water quality parameter Different parameters", 
          "quality parameter Different parameters", 
          "parameter Different parameters", 
          "Online Sequencing-ELM", 
          "Sequencing-ELM", 
          "optimization-ELM", 
          "prediction of WQI", 
          "time series river water quality dataset", 
          "series river water quality dataset", 
          "river water quality dataset", 
          "BBO-ELM", 
          "efficient data-driven methodology", 
          "Mid Gangetic Region"
        ], 
        "name": "Evaluation of Water Quality Based on a Machine Learning Algorithm and Water Quality Index for Mid Gangetic Region (South Bihar plain), India", 
        "pagination": "1063-1072", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140944162"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12594-021-1821-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12594-021-1821-0", 
          "https://app.dimensions.ai/details/publication/pub.1140944162"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12594-021-1821-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12594-021-1821-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12594-021-1821-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12594-021-1821-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12594-021-1821-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      22 PREDICATES      124 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12594-021-1821-0 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author Nae851a0520af417a9b9bc7ec90e81159
    4 schema:citation sg:pub.10.1007/s00254-008-1652-y
    5 sg:pub.10.1007/s10661-009-1031-5
    6 sg:pub.10.1007/s10661-009-1302-1
    7 sg:pub.10.1007/s10661-019-7972-4
    8 sg:pub.10.1007/s11356-017-9283-z
    9 sg:pub.10.1007/s11631-013-0631-5
    10 sg:pub.10.1007/s12403-011-0054-7
    11 sg:pub.10.1007/s12517-019-4519-5
    12 sg:pub.10.1007/s12594-017-0665-0
    13 sg:pub.10.1007/s12665-009-0303-2
    14 sg:pub.10.1007/s12665-018-7889-1
    15 sg:pub.10.1155/2009/757424
    16 schema:datePublished 2021-09-07
    17 schema:datePublishedReg 2021-09-07
    18 schema:description Water quality index (WQI) is an indicator of the quality of any ground water storage in the form of a single number representing a combination of different water quality parameter Different parameters like that pH, total dissolved solids (TDS), electrical conductivity (ECE), nitrate, sulphate, total hardness, calcium hardness, magnesium hardness, etc. are critical to assess the WQI. Additionally, the precision in the prediction of this parameter affects the quality of the result. In this research, Extreme Learning Model (ELM) and three hybrid variants of the same model, namely, RBF-ELM, Online Sequencing-ELM (OS-ELM), Biogeography-based optimization-ELM (BBO-ELM) were tested for the prediction of WQI for ground water quality. A time series river water quality dataset was used to develop and test the models. The performance of the proposed models are evaluated using various fitness indices such as, the correlation of coefficient (r), root mean square error (RMSE), Kling-Gupta Efficiency (KGE), the index of agreement (d). Based on the comparisons, BBO-ELM was indicated as a possible alternative or substitute to assist the water quality assessment for the groundwater and can be readily applied an efficient data-driven methodology. BBO-ELM emerged as the better generalized hybrid model for calculating WQI.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N0524fdeb1c794fa7a0bd8aae1a440293
    23 N7286da4374dc4f7a9003288332d1d396
    24 sg:journal.1136575
    25 schema:keywords BBO-ELM
    26 Gangetic region
    27 India
    28 Kling–Gupta efficiency
    29 Machine Learning Algorithms
    30 Mid Gangetic Region
    31 Online Sequencing-ELM
    32 Quality Index
    33 RBF-ELM
    34 Sequencing-ELM
    35 agreement
    36 algorithm
    37 alternative
    38 assessment
    39 biogeography
    40 calcium hardness
    41 coefficient
    42 combination
    43 comparison
    44 conductivity
    45 correlation
    46 correlation of coefficient
    47 data-driven methodology
    48 dataset
    49 different parameters
    50 different water quality parameter Different parameters
    51 dissolved solids
    52 efficiency
    53 efficient data-driven methodology
    54 electrical conductivity
    55 error
    56 evaluation
    57 extreme learning model
    58 fitness index
    59 form
    60 ground water quality
    61 ground water storage
    62 groundwater
    63 hardness
    64 hybrid model
    65 hybrid variants
    66 index
    67 index of agreement
    68 indicators
    69 learning algorithm
    70 learning model
    71 magnesium hardness
    72 mean square error
    73 methodology
    74 model
    75 nitrate
    76 number
    77 optimization-ELM
    78 parameter Different parameters
    79 parameters
    80 performance
    81 possible alternative
    82 precision
    83 prediction
    84 prediction of WQI
    85 quality
    86 quality assessment
    87 quality datasets
    88 quality parameter Different parameters
    89 region
    90 research
    91 results
    92 river water quality dataset
    93 root mean square error
    94 same model
    95 series river water quality dataset
    96 single number
    97 solids
    98 square error
    99 storage
    100 substitute
    101 sulfate
    102 time series river water quality dataset
    103 total dissolved solids
    104 total hardness
    105 variants
    106 water quality
    107 water quality assessment
    108 water quality dataset
    109 water quality index
    110 water quality parameter Different parameters
    111 water storage
    112 schema:name Evaluation of Water Quality Based on a Machine Learning Algorithm and Water Quality Index for Mid Gangetic Region (South Bihar plain), India
    113 schema:pagination 1063-1072
    114 schema:productId N350efdd3b53f4a2fa6a4a729f280bb16
    115 N6aa438f241f24fb19a737c293d46abdc
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140944162
    117 https://doi.org/10.1007/s12594-021-1821-0
    118 schema:sdDatePublished 2022-01-01T18:58
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher Nd4fcd303b2cc4d3291ed45567b1953d4
    121 schema:url https://doi.org/10.1007/s12594-021-1821-0
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N0524fdeb1c794fa7a0bd8aae1a440293 schema:issueNumber 9
    126 rdf:type schema:PublicationIssue
    127 N1130c296420049a59d3007c7006c940c rdf:first sg:person.0723617476.92
    128 rdf:rest rdf:nil
    129 N25321af3185b441b9465c49c5585018d schema:affiliation grid-institutes:grid.419487.7
    130 schema:familyName Gupta
    131 schema:givenName Amar Nath
    132 rdf:type schema:Person
    133 N2d72649898b74ec6b0adbb47d84c38f6 rdf:first sg:person.012055724152.78
    134 rdf:rest N1130c296420049a59d3007c7006c940c
    135 N350efdd3b53f4a2fa6a4a729f280bb16 schema:name dimensions_id
    136 schema:value pub.1140944162
    137 rdf:type schema:PropertyValue
    138 N6aa438f241f24fb19a737c293d46abdc schema:name doi
    139 schema:value 10.1007/s12594-021-1821-0
    140 rdf:type schema:PropertyValue
    141 N7286da4374dc4f7a9003288332d1d396 schema:volumeNumber 97
    142 rdf:type schema:PublicationVolume
    143 Nae851a0520af417a9b9bc7ec90e81159 rdf:first N25321af3185b441b9465c49c5585018d
    144 rdf:rest N2d72649898b74ec6b0adbb47d84c38f6
    145 Nd4fcd303b2cc4d3291ed45567b1953d4 schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Earth Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Geology
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1136575 schema:issn 0016-7622
    154 0974-6889
    155 schema:name Journal of the Geological Society of India
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.012055724152.78 schema:affiliation grid-institutes:grid.419487.7
    159 schema:familyName Kumar
    160 schema:givenName Deepak
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055724152.78
    162 rdf:type schema:Person
    163 sg:person.0723617476.92 schema:affiliation grid-institutes:grid.419487.7
    164 schema:familyName Singh
    165 schema:givenName Anshuman
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723617476.92
    167 rdf:type schema:Person
    168 sg:pub.10.1007/s00254-008-1652-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021649958
    169 https://doi.org/10.1007/s00254-008-1652-y
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s10661-009-1031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052016926
    172 https://doi.org/10.1007/s10661-009-1031-5
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10661-009-1302-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008951046
    175 https://doi.org/10.1007/s10661-009-1302-1
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10661-019-7972-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123117699
    178 https://doi.org/10.1007/s10661-019-7972-4
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11356-017-9283-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085716353
    181 https://doi.org/10.1007/s11356-017-9283-z
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11631-013-0631-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030219
    184 https://doi.org/10.1007/s11631-013-0631-5
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s12403-011-0054-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001513483
    187 https://doi.org/10.1007/s12403-011-0054-7
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s12517-019-4519-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115144941
    190 https://doi.org/10.1007/s12517-019-4519-5
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s12594-017-0665-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090832828
    193 https://doi.org/10.1007/s12594-017-0665-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s12665-009-0303-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017456512
    196 https://doi.org/10.1007/s12665-009-0303-2
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s12665-018-7889-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107437511
    199 https://doi.org/10.1007/s12665-018-7889-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1155/2009/757424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167622
    202 https://doi.org/10.1155/2009/757424
    203 rdf:type schema:CreativeWork
    204 grid-institutes:grid.419487.7 schema:alternateName Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India
    205 schema:name Department of Civil Engineering, National Institute of Technology, 800 005, Patna, India
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...