Ontology type: schema:ScholarlyArticle
2021-07-31
AUTHORSGustavo Ossandón, Daniel Sepúlveda
ABSTRACTThis article studies an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}—periodic system of Nicholson-type differential equations with nonlinear density-dependent mortality rate. Using the degree theory we obtain sufficient conditions for the existence of a positive ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}—periodic solution. Also a result of local asymptotic stability for the periodic solution is obtained by Lyapunov theory. Our results improve previous researches on the subject. More... »
PAGES1-15
http://scigraph.springernature.com/pub.10.1007/s12591-021-00580-w
DOIhttp://dx.doi.org/10.1007/s12591-021-00580-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140103881
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidad Tecnol\u00f3gica Metropolitana, Las Palmeras 3360, \u00d1u\u00f1oa, Santiago, Chile",
"id": "http://www.grid.ac/institutes/grid.441835.f",
"name": [
"Departamento de Matem\u00e1tica, Universidad Tecnol\u00f3gica Metropolitana, Las Palmeras 3360, \u00d1u\u00f1oa, Santiago, Chile"
],
"type": "Organization"
},
"familyName": "Ossand\u00f3n",
"givenName": "Gustavo",
"id": "sg:person.011576423217.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576423217.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidad Tecnol\u00f3gica Metropolitana, Las Palmeras 3360, \u00d1u\u00f1oa, Santiago, Chile",
"id": "http://www.grid.ac/institutes/grid.441835.f",
"name": [
"Departamento de Matem\u00e1tica, Universidad Tecnol\u00f3gica Metropolitana, Las Palmeras 3360, \u00d1u\u00f1oa, Santiago, Chile"
],
"type": "Organization"
},
"familyName": "Sep\u00falveda",
"givenName": "Daniel",
"id": "sg:person.011644304071.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644304071.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/287017a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028561667",
"https://doi.org/10.1038/287017a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13660-019-2275-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124157833",
"https://doi.org/10.1186/s13660-019-2275-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-016-2706-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046019230",
"https://doi.org/10.1007/s11071-016-2706-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-8893-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038777443",
"https://doi.org/10.1007/978-1-4614-8893-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12591-016-0285-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001700607",
"https://doi.org/10.1007/s12591-016-0285-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-31",
"datePublishedReg": "2021-07-31",
"description": "This article studies an \u03c9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega$$\\end{document}\u2014periodic system of Nicholson-type differential equations with nonlinear density-dependent mortality rate. Using the degree theory we obtain sufficient conditions for the existence of a positive \u03c9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega$$\\end{document}\u2014periodic solution. Also a result of local asymptotic stability for the periodic solution is obtained by Lyapunov theory. Our results improve previous researches on the subject.",
"genre": "article",
"id": "sg:pub.10.1007/s12591-021-00580-w",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136107",
"issn": [
"0971-3514",
"0974-6870"
],
"name": "Differential Equations and Dynamical Systems",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"periodic solutions",
"local asymptotic stability",
"differential equations",
"asymptotic stability",
"Lyapunov theory",
"degree theory",
"sufficient conditions",
"Nicholson-type systems",
"periodic systems",
"density-dependent mortality rate",
"theory",
"solution",
"equations",
"existence",
"system",
"stability",
"results",
"conditions",
"article",
"rate",
"research",
"previous research",
"density-dependent mortality",
"subjects",
"mortality rate",
"mortality"
],
"name": "Existence and Stability of Periodic Solutions of Nicholson-Type System with Nonlinear Density-Dependent Mortality",
"pagination": "1-15",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140103881"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12591-021-00580-w"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12591-021-00580-w",
"https://app.dimensions.ai/details/publication/pub.1140103881"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12591-021-00580-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00580-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00580-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00580-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00580-w'
This table displays all metadata directly associated to this object as RDF triples.
105 TRIPLES
22 PREDICATES
53 URIs
40 LITERALS
4 BLANK NODES