Ontology type: schema:ScholarlyArticle
2021-07-05
AUTHORS ABSTRACTThis paper deals with an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-uniform scheme for delay parabolic singularly perturbed problem (DPSPP). The considered problem is a convection–diffusion (C–D) type with the convection coefficient vanishing inside the domain. The turning point leads to the formation of two exponential boundary layers in the exact solution. We numerically solve the problem using the fitted mesh method and analyze the upwind scheme on a non-uniform mesh. We state some analytical results on the exact solution, which will be required in the convergence analysis of the proposed method. The proposed scheme has order of convergence almost one in space variable and one in time variable. The numerical findings practically support the theoretical results. More... »
PAGES1-16
http://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5
DOIhttp://dx.doi.org/10.1007/s12591-021-00577-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1139409498
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Delhi, 110007, Delhi, India",
"id": "http://www.grid.ac/institutes/grid.8195.5",
"name": [
"Department of Mathematics, University of Delhi, 110007, Delhi, India"
],
"type": "Organization"
},
"familyName": "Yadav",
"givenName": "Swati",
"id": "sg:person.07714751667.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714751667.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Delhi, 110007, Delhi, India",
"id": "http://www.grid.ac/institutes/grid.8195.5",
"name": [
"Department of Mathematics, University of Delhi, 110007, Delhi, India"
],
"type": "Organization"
},
"familyName": "Rai",
"givenName": "Pratima",
"id": "sg:person.014600150657.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600150657.73"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s40995-019-00697-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112703675",
"https://doi.org/10.1007/s40995-019-00697-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10957-011-9965-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028011518",
"https://doi.org/10.1007/s10957-011-9965-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s000300050059",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003755117",
"https://doi.org/10.1007/s000300050059"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12591-017-0385-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091211943",
"https://doi.org/10.1007/s12591-017-0385-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-015-0559-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003482095",
"https://doi.org/10.1007/s10543-015-0559-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12190-018-1174-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100994370",
"https://doi.org/10.1007/s12190-018-1174-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-018-0557-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105089965",
"https://doi.org/10.1007/s11075-018-0557-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4050-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014925978",
"https://doi.org/10.1007/978-1-4612-4050-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-05",
"datePublishedReg": "2021-07-05",
"description": "This paper deals with an \u03b5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon$$\\end{document}-uniform scheme for delay parabolic singularly perturbed problem (DPSPP). The considered problem is a convection\u2013diffusion (C\u2013D) type with the convection coefficient vanishing inside the domain. The turning point leads to the formation of two exponential boundary layers in the exact solution. We numerically solve the problem using the fitted mesh method and analyze the upwind scheme on a non-uniform mesh. We state some analytical results on the exact solution, which will be required in the convergence analysis of the proposed method. The proposed scheme has order of convergence almost one in space variable and one in time variable. The numerical findings practically support the theoretical results.",
"genre": "article",
"id": "sg:pub.10.1007/s12591-021-00577-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136107",
"issn": [
"0971-3514",
"0974-6870"
],
"name": "Differential Equations and Dynamical Systems",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"exact solution",
"order of convergence",
"convection-diffusion type",
"non-uniform meshes",
"space variables",
"singularly perturbed",
"perturbed problem",
"exponential boundary layers",
"upwind scheme",
"convergence analysis",
"point problem",
"uniform scheme",
"theoretical results",
"time variable",
"mesh method",
"convection coefficient",
"numerical findings",
"analytical results",
"boundary layer",
"scheme",
"problem",
"solution",
"parabolic",
"convergence",
"perturbed",
"variables",
"mesh",
"layer",
"method",
"coefficient",
"point",
"results",
"order",
"domain",
"formation",
"analysis",
"types",
"findings",
"paper"
],
"name": "A Parameter Uniform Scheme for Delay Parabolic Singularly Perturbed Turning Point Problem",
"pagination": "1-16",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139409498"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12591-021-00577-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12591-021-00577-5",
"https://app.dimensions.ai/details/publication/pub.1139409498"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12591-021-00577-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
22 PREDICATES
70 URIs
54 LITERALS
4 BLANK NODES