A Parameter Uniform Scheme for Delay Parabolic Singularly Perturbed Turning Point Problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-07-05

AUTHORS

Swati Yadav, Pratima Rai

ABSTRACT

This paper deals with an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-uniform scheme for delay parabolic singularly perturbed problem (DPSPP). The considered problem is a convection–diffusion (C–D) type with the convection coefficient vanishing inside the domain. The turning point leads to the formation of two exponential boundary layers in the exact solution. We numerically solve the problem using the fitted mesh method and analyze the upwind scheme on a non-uniform mesh. We state some analytical results on the exact solution, which will be required in the convergence analysis of the proposed method. The proposed scheme has order of convergence almost one in space variable and one in time variable. The numerical findings practically support the theoretical results. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5

DOI

http://dx.doi.org/10.1007/s12591-021-00577-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139409498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Delhi, 110007, Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Mathematics, University of Delhi, 110007, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Swati", 
        "id": "sg:person.07714751667.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714751667.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Delhi, 110007, Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Mathematics, University of Delhi, 110007, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rai", 
        "givenName": "Pratima", 
        "id": "sg:person.014600150657.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600150657.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40995-019-00697-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112703675", 
          "https://doi.org/10.1007/s40995-019-00697-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-011-9965-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028011518", 
          "https://doi.org/10.1007/s10957-011-9965-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000300050059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755117", 
          "https://doi.org/10.1007/s000300050059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12591-017-0385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211943", 
          "https://doi.org/10.1007/s12591-017-0385-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-015-0559-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003482095", 
          "https://doi.org/10.1007/s10543-015-0559-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12190-018-1174-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100994370", 
          "https://doi.org/10.1007/s12190-018-1174-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-018-0557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105089965", 
          "https://doi.org/10.1007/s11075-018-0557-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014925978", 
          "https://doi.org/10.1007/978-1-4612-4050-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-05", 
    "datePublishedReg": "2021-07-05", 
    "description": "This paper deals with an \u03b5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon$$\\end{document}-uniform scheme for delay parabolic singularly perturbed problem (DPSPP). The considered problem is a convection\u2013diffusion (C\u2013D) type with the convection coefficient vanishing inside the domain. The turning point leads to the formation of two exponential boundary layers in the exact solution. We numerically solve the problem using the fitted mesh method and analyze the upwind scheme on a non-uniform mesh. We state some analytical results on the exact solution, which will be required in the convergence analysis of the proposed method. The proposed scheme has order of convergence almost one in space variable and one in time variable. The numerical findings practically support the theoretical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12591-021-00577-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136107", 
        "issn": [
          "0971-3514", 
          "0974-6870"
        ], 
        "name": "Differential Equations and Dynamical Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "exact solution", 
      "order of convergence", 
      "convection-diffusion type", 
      "non-uniform meshes", 
      "space variables", 
      "singularly perturbed", 
      "perturbed problem", 
      "exponential boundary layers", 
      "upwind scheme", 
      "convergence analysis", 
      "point problem", 
      "uniform scheme", 
      "theoretical results", 
      "time variable", 
      "mesh method", 
      "convection coefficient", 
      "numerical findings", 
      "analytical results", 
      "boundary layer", 
      "scheme", 
      "problem", 
      "solution", 
      "parabolic", 
      "convergence", 
      "perturbed", 
      "variables", 
      "mesh", 
      "layer", 
      "method", 
      "coefficient", 
      "point", 
      "results", 
      "order", 
      "domain", 
      "formation", 
      "analysis", 
      "types", 
      "findings", 
      "paper"
    ], 
    "name": "A Parameter Uniform Scheme for Delay Parabolic Singularly Perturbed Turning Point Problem", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139409498"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12591-021-00577-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12591-021-00577-5", 
      "https://app.dimensions.ai/details/publication/pub.1139409498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12591-021-00577-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00577-5'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      70 URIs      54 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12591-021-00577-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N71b6e447807e4b13aa4faa806fccc83e
4 schema:citation sg:pub.10.1007/978-1-4612-4050-1
5 sg:pub.10.1007/s000300050059
6 sg:pub.10.1007/s10543-015-0559-8
7 sg:pub.10.1007/s10957-011-9965-5
8 sg:pub.10.1007/s11075-018-0557-4
9 sg:pub.10.1007/s12190-018-1174-z
10 sg:pub.10.1007/s12591-017-0385-3
11 sg:pub.10.1007/s40995-019-00697-2
12 schema:datePublished 2021-07-05
13 schema:datePublishedReg 2021-07-05
14 schema:description This paper deals with an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-uniform scheme for delay parabolic singularly perturbed problem (DPSPP). The considered problem is a convection–diffusion (C–D) type with the convection coefficient vanishing inside the domain. The turning point leads to the formation of two exponential boundary layers in the exact solution. We numerically solve the problem using the fitted mesh method and analyze the upwind scheme on a non-uniform mesh. We state some analytical results on the exact solution, which will be required in the convergence analysis of the proposed method. The proposed scheme has order of convergence almost one in space variable and one in time variable. The numerical findings practically support the theoretical results.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf sg:journal.1136107
19 schema:keywords analysis
20 analytical results
21 boundary layer
22 coefficient
23 convection coefficient
24 convection-diffusion type
25 convergence
26 convergence analysis
27 domain
28 exact solution
29 exponential boundary layers
30 findings
31 formation
32 layer
33 mesh
34 mesh method
35 method
36 non-uniform meshes
37 numerical findings
38 order
39 order of convergence
40 paper
41 parabolic
42 perturbed
43 perturbed problem
44 point
45 point problem
46 problem
47 results
48 scheme
49 singularly perturbed
50 solution
51 space variables
52 theoretical results
53 time variable
54 types
55 uniform scheme
56 upwind scheme
57 variables
58 schema:name A Parameter Uniform Scheme for Delay Parabolic Singularly Perturbed Turning Point Problem
59 schema:pagination 1-16
60 schema:productId Nc16770cf4be542b6a8311555a188f578
61 Nd884f86016fb41328286c814557b5bb8
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139409498
63 https://doi.org/10.1007/s12591-021-00577-5
64 schema:sdDatePublished 2022-05-20T07:39
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N0cbe1fe7069b435bbd7ddd548506b566
67 schema:url https://doi.org/10.1007/s12591-021-00577-5
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0cbe1fe7069b435bbd7ddd548506b566 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N71b6e447807e4b13aa4faa806fccc83e rdf:first sg:person.07714751667.43
74 rdf:rest N879c690b396246e595213a2f2d6d0a81
75 N879c690b396246e595213a2f2d6d0a81 rdf:first sg:person.014600150657.73
76 rdf:rest rdf:nil
77 Nc16770cf4be542b6a8311555a188f578 schema:name dimensions_id
78 schema:value pub.1139409498
79 rdf:type schema:PropertyValue
80 Nd884f86016fb41328286c814557b5bb8 schema:name doi
81 schema:value 10.1007/s12591-021-00577-5
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1136107 schema:issn 0971-3514
90 0974-6870
91 schema:name Differential Equations and Dynamical Systems
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.014600150657.73 schema:affiliation grid-institutes:grid.8195.5
95 schema:familyName Rai
96 schema:givenName Pratima
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600150657.73
98 rdf:type schema:Person
99 sg:person.07714751667.43 schema:affiliation grid-institutes:grid.8195.5
100 schema:familyName Yadav
101 schema:givenName Swati
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714751667.43
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4612-4050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014925978
105 https://doi.org/10.1007/978-1-4612-4050-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s000300050059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755117
108 https://doi.org/10.1007/s000300050059
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10543-015-0559-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003482095
111 https://doi.org/10.1007/s10543-015-0559-8
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10957-011-9965-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028011518
114 https://doi.org/10.1007/s10957-011-9965-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11075-018-0557-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105089965
117 https://doi.org/10.1007/s11075-018-0557-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s12190-018-1174-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100994370
120 https://doi.org/10.1007/s12190-018-1174-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s12591-017-0385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211943
123 https://doi.org/10.1007/s12591-017-0385-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s40995-019-00697-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703675
126 https://doi.org/10.1007/s40995-019-00697-2
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.8195.5 schema:alternateName Department of Mathematics, University of Delhi, 110007, Delhi, India
129 schema:name Department of Mathematics, University of Delhi, 110007, Delhi, India
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...