Ontology type: schema:ScholarlyArticle Open Access: True
2021-06-14
AUTHORSVahid Roomi, Hamid Reza Ahmadi
ABSTRACTThis paper presents some new definitions and results about a system of uncertain homogeneous linear differential equations. Introducing the uncertain fundamental system and uncertain fundamental matrix for the uncertain system, the Liouville formula will be proven for the system. Moreover, the explicit solutions of the system will be presented.
PAGES1-14
http://scigraph.springernature.com/pub.10.1007/s12591-021-00573-9
DOIhttp://dx.doi.org/10.1007/s12591-021-00573-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138850048
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/34149209
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran",
"id": "http://www.grid.ac/institutes/grid.411468.e",
"name": [
"Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran"
],
"type": "Organization"
},
"familyName": "Roomi",
"givenName": "Vahid",
"id": "sg:person.011240323343.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240323343.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran",
"id": "http://www.grid.ac/institutes/grid.411468.e",
"name": [
"Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran"
],
"type": "Organization"
},
"familyName": "Ahmadi",
"givenName": "Hamid Reza",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10700-015-9210-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031981793",
"https://doi.org/10.1007/s10700-015-9210-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10700-020-09337-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1130829895",
"https://doi.org/10.1007/s10700-020-09337-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10700-012-9139-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040573559",
"https://doi.org/10.1007/s10700-012-9139-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-13959-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003379784",
"https://doi.org/10.1007/978-3-642-13959-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10700-010-9073-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021254746",
"https://doi.org/10.1007/s10700-010-9073-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-52729-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046224155",
"https://doi.org/10.1007/978-3-662-52729-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-06-14",
"datePublishedReg": "2021-06-14",
"description": "This paper presents some new definitions and results about a system of uncertain homogeneous linear differential equations. Introducing the uncertain fundamental system and uncertain fundamental matrix for the uncertain system, the Liouville formula will be proven for the system. Moreover, the explicit solutions of the system will be presented.",
"genre": "article",
"id": "sg:pub.10.1007/s12591-021-00573-9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136107",
"issn": [
"0971-3514",
"0974-6870"
],
"name": "Differential Equations and Dynamical Systems",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"Liouville formula",
"explicit solution",
"homogeneous linear differential equation",
"linear differential equations",
"homogeneous linear system",
"differential equations",
"linear systems",
"uncertain systems",
"fundamental matrix",
"fundamental system",
"formula",
"new definition",
"equations",
"solution",
"system",
"matrix",
"definition",
"results",
"paper"
],
"name": "The Liouville Formula for the Uncertain Homogeneous Linear System and Explicit Solutions of the System",
"pagination": "1-14",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138850048"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12591-021-00573-9"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"34149209"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12591-021-00573-9",
"https://app.dimensions.ai/details/publication/pub.1138850048"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12591-021-00573-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00573-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00573-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00573-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00573-9'
This table displays all metadata directly associated to this object as RDF triples.
105 TRIPLES
22 PREDICATES
49 URIs
35 LITERALS
5 BLANK NODES