Pullback Attractors in Vg for Non-autonomous 2D g-Navier–Stokes Equations in Unbounded Domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-31

AUTHORS

Dao Trong Quyet, Le Thi Thuy

ABSTRACT

We study the first initial boundary value problem for the non-autonomous 2D g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. We show the existence and some further results of a pullback attractor for the process generated by strong solutions to the problem with respect to a large class of non-autonomous forcing terms. To overcome the difficulty caused by the unboundedness of the domain, the proof is based on a pullback asymptotic compactness argument and the use of the enstrophy equation. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x

DOI

http://dx.doi.org/10.1007/s12591-021-00571-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138482497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.444946.f", 
          "name": [
            "Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quyet", 
        "givenName": "Dao Trong", 
        "id": "sg:person.012740147125.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012740147125.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.448682.4", 
          "name": [
            "Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thuy", 
        "givenName": "Le Thi", 
        "id": "sg:person.012117725642.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117725642.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40306-016-0180-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006448481", 
          "https://doi.org/10.1007/s40306-016-0180-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40306-014-0073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044133323", 
          "https://doi.org/10.1007/s40306-014-0073-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4581-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051507199", 
          "https://doi.org/10.1007/978-1-4614-4581-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40306-013-0023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041446702", 
          "https://doi.org/10.1007/s40306-013-0023-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-0732-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108494117", 
          "https://doi.org/10.1007/978-94-010-0732-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-010-1304-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050514239", 
          "https://doi.org/10.1007/s10483-010-1304-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-31", 
    "datePublishedReg": "2021-05-31", 
    "description": "We study the first initial boundary value problem for the non-autonomous 2D g-Navier\u2013Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincar\u00e9 inequality. We show the existence and some further results of a pullback attractor for the process generated by strong solutions to the problem with respect to a large class of non-autonomous forcing terms. To overcome the difficulty caused by the unboundedness of the domain, the proof is based on a pullback asymptotic compactness argument and the use of the enstrophy equation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12591-021-00571-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136107", 
        "issn": [
          "0971-3514", 
          "0974-6870"
        ], 
        "name": "Differential Equations and Dynamical Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Navier-Stokes equations", 
      "enstrophy equation", 
      "boundary value problem", 
      "forcing term", 
      "equations", 
      "initial-boundary value problem", 
      "value problem", 
      "unbounded domains", 
      "solution", 
      "problem", 
      "arbitrary domains", 
      "Further results", 
      "process", 
      "Vg", 
      "results", 
      "domain", 
      "respect", 
      "terms", 
      "strong solutions", 
      "use", 
      "attractors", 
      "difficulties", 
      "large class", 
      "proof", 
      "existence", 
      "class", 
      "unboundedness", 
      "first initial-boundary value problem", 
      "inequality", 
      "compactness arguments", 
      "pullback attractors", 
      "argument", 
      "Poincar\u00e9 inequality", 
      "non-autonomous forcing terms"
    ], 
    "name": "Pullback Attractors in Vg for Non-autonomous 2D g-Navier\u2013Stokes Equations in Unbounded Domains", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138482497"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12591-021-00571-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12591-021-00571-x", 
      "https://app.dimensions.ai/details/publication/pub.1138482497"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12591-021-00571-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      63 URIs      49 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12591-021-00571-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5ccd1ab541844203a60c6e456a734d61
4 schema:citation sg:pub.10.1007/978-1-4614-4581-4
5 sg:pub.10.1007/978-94-010-0732-0
6 sg:pub.10.1007/s10483-010-1304-x
7 sg:pub.10.1007/s40306-013-0023-2
8 sg:pub.10.1007/s40306-014-0073-0
9 sg:pub.10.1007/s40306-016-0180-1
10 schema:datePublished 2021-05-31
11 schema:datePublishedReg 2021-05-31
12 schema:description We study the first initial boundary value problem for the non-autonomous 2D g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. We show the existence and some further results of a pullback attractor for the process generated by strong solutions to the problem with respect to a large class of non-autonomous forcing terms. To overcome the difficulty caused by the unboundedness of the domain, the proof is based on a pullback asymptotic compactness argument and the use of the enstrophy equation.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf sg:journal.1136107
17 schema:keywords Further results
18 Navier-Stokes equations
19 Poincaré inequality
20 Vg
21 arbitrary domains
22 argument
23 attractors
24 boundary value problem
25 class
26 compactness arguments
27 difficulties
28 domain
29 enstrophy equation
30 equations
31 existence
32 first initial-boundary value problem
33 forcing term
34 inequality
35 initial-boundary value problem
36 large class
37 non-autonomous forcing terms
38 problem
39 process
40 proof
41 pullback attractors
42 respect
43 results
44 solution
45 strong solutions
46 terms
47 unbounded domains
48 unboundedness
49 use
50 value problem
51 schema:name Pullback Attractors in Vg for Non-autonomous 2D g-Navier–Stokes Equations in Unbounded Domains
52 schema:pagination 1-20
53 schema:productId N788ccdbe613e460d9bb7043643c64565
54 Nf77288e96a0c4c80ae6360a74f9db4aa
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138482497
56 https://doi.org/10.1007/s12591-021-00571-x
57 schema:sdDatePublished 2022-05-20T07:37
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N220d888ff3b24aa681680e9913a03430
60 schema:url https://doi.org/10.1007/s12591-021-00571-x
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N220d888ff3b24aa681680e9913a03430 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N5ccd1ab541844203a60c6e456a734d61 rdf:first sg:person.012740147125.83
67 rdf:rest Nb980d2f55e494f32b198ea5e085550c0
68 N788ccdbe613e460d9bb7043643c64565 schema:name doi
69 schema:value 10.1007/s12591-021-00571-x
70 rdf:type schema:PropertyValue
71 Nb980d2f55e494f32b198ea5e085550c0 rdf:first sg:person.012117725642.08
72 rdf:rest rdf:nil
73 Nf77288e96a0c4c80ae6360a74f9db4aa schema:name dimensions_id
74 schema:value pub.1138482497
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136107 schema:issn 0971-3514
83 0974-6870
84 schema:name Differential Equations and Dynamical Systems
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.012117725642.08 schema:affiliation grid-institutes:grid.448682.4
88 schema:familyName Thuy
89 schema:givenName Le Thi
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117725642.08
91 rdf:type schema:Person
92 sg:person.012740147125.83 schema:affiliation grid-institutes:grid.444946.f
93 schema:familyName Quyet
94 schema:givenName Dao Trong
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012740147125.83
96 rdf:type schema:Person
97 sg:pub.10.1007/978-1-4614-4581-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051507199
98 https://doi.org/10.1007/978-1-4614-4581-4
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-94-010-0732-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108494117
101 https://doi.org/10.1007/978-94-010-0732-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10483-010-1304-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050514239
104 https://doi.org/10.1007/s10483-010-1304-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s40306-013-0023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041446702
107 https://doi.org/10.1007/s40306-013-0023-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s40306-014-0073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044133323
110 https://doi.org/10.1007/s40306-014-0073-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s40306-016-0180-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006448481
113 https://doi.org/10.1007/s40306-016-0180-1
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.444946.f schema:alternateName Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam
116 schema:name Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam
117 rdf:type schema:Organization
118 grid-institutes:grid.448682.4 schema:alternateName Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam
119 schema:name Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...