Ontology type: schema:ScholarlyArticle
2021-05-31
AUTHORS ABSTRACTWe study the first initial boundary value problem for the non-autonomous 2D g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. We show the existence and some further results of a pullback attractor for the process generated by strong solutions to the problem with respect to a large class of non-autonomous forcing terms. To overcome the difficulty caused by the unboundedness of the domain, the proof is based on a pullback asymptotic compactness argument and the use of the enstrophy equation. More... »
PAGES1-20
http://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x
DOIhttp://dx.doi.org/10.1007/s12591-021-00571-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138482497
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam",
"id": "http://www.grid.ac/institutes/grid.444946.f",
"name": [
"Department of Mathematics, Academy of Finance, 58 Le Van Hien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam"
],
"type": "Organization"
},
"familyName": "Quyet",
"givenName": "Dao Trong",
"id": "sg:person.012740147125.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012740147125.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam",
"id": "http://www.grid.ac/institutes/grid.448682.4",
"name": [
"Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam"
],
"type": "Organization"
},
"familyName": "Thuy",
"givenName": "Le Thi",
"id": "sg:person.012117725642.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117725642.08"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s40306-016-0180-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006448481",
"https://doi.org/10.1007/s40306-016-0180-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40306-014-0073-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044133323",
"https://doi.org/10.1007/s40306-014-0073-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-4581-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051507199",
"https://doi.org/10.1007/978-1-4614-4581-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40306-013-0023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041446702",
"https://doi.org/10.1007/s40306-013-0023-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-0732-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1108494117",
"https://doi.org/10.1007/978-94-010-0732-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10483-010-1304-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050514239",
"https://doi.org/10.1007/s10483-010-1304-x"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-05-31",
"datePublishedReg": "2021-05-31",
"description": "We study the first initial boundary value problem for the non-autonomous 2D g-Navier\u2013Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincar\u00e9 inequality. We show the existence and some further results of a pullback attractor for the process generated by strong solutions to the problem with respect to a large class of non-autonomous forcing terms. To overcome the difficulty caused by the unboundedness of the domain, the proof is based on a pullback asymptotic compactness argument and the use of the enstrophy equation.",
"genre": "article",
"id": "sg:pub.10.1007/s12591-021-00571-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136107",
"issn": [
"0971-3514",
"0974-6870"
],
"name": "Differential Equations and Dynamical Systems",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"Navier-Stokes equations",
"enstrophy equation",
"boundary value problem",
"forcing term",
"equations",
"initial-boundary value problem",
"value problem",
"unbounded domains",
"solution",
"problem",
"arbitrary domains",
"Further results",
"process",
"Vg",
"results",
"domain",
"respect",
"terms",
"strong solutions",
"use",
"attractors",
"difficulties",
"large class",
"proof",
"existence",
"class",
"unboundedness",
"first initial-boundary value problem",
"inequality",
"compactness arguments",
"pullback attractors",
"argument",
"Poincar\u00e9 inequality",
"non-autonomous forcing terms"
],
"name": "Pullback Attractors in Vg for Non-autonomous 2D g-Navier\u2013Stokes Equations in Unbounded Domains",
"pagination": "1-20",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138482497"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12591-021-00571-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12591-021-00571-x",
"https://app.dimensions.ai/details/publication/pub.1138482497"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12591-021-00571-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00571-x'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
22 PREDICATES
63 URIs
49 LITERALS
4 BLANK NODES