Asymptotics of the Eigenvalues of Self-adjoint Fourth Order Boundary Value Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-26

AUTHORS

Bertin Zinsou

ABSTRACT

A regular fourth order differential equation which depends quadratically on the eigenvalue parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} is considered with classes of separable boundary conditions, where exactly one of the boundary conditions depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} linearly. This problem is described by a quadratic operator polynomial with self-adjoint operators. The location of the eigenvalues is investigated and the first four terms of the eigenvalues are provided. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12591-021-00567-7

DOI

http://dx.doi.org/10.1007/s12591-021-00567-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138331790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics, University of Witwatersrand, Private Bag 3 Wits 2050, Johannesburg, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.11951.3d", 
          "name": [
            "School of Mathematics, University of Witwatersrand, Private Bag 3 Wits 2050, Johannesburg, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zinsou", 
        "givenName": "Bertin", 
        "id": "sg:person.07456201155.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456201155.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13661-017-0768-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252652", 
          "https://doi.org/10.1186/s13661-017-0768-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03322121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081178", 
          "https://doi.org/10.1007/bf03322121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-015-0341-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050043345", 
          "https://doi.org/10.1186/s13661-015-0341-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-17070-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037185142", 
          "https://doi.org/10.1007/978-3-319-17070-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-26", 
    "datePublishedReg": "2021-05-26", 
    "description": "A regular fourth order differential equation which depends quadratically on the eigenvalue parameter \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda$$\\end{document} is considered with classes of separable boundary conditions, where exactly one of the boundary conditions depends on \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda$$\\end{document} linearly. This problem is described by a quadratic operator polynomial with self-adjoint operators. The location of the eigenvalues is investigated and the first four terms of the eigenvalues are provided.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12591-021-00567-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136107", 
        "issn": [
          "0971-3514", 
          "0974-6870"
        ], 
        "name": "Differential Equations and Dynamical Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "fourth-order differential equation", 
      "order boundary value problems", 
      "order differential equations", 
      "fourth-order boundary value problems", 
      "quadratic operator polynomials", 
      "boundary conditions", 
      "self-adjoint operators", 
      "boundary value problem", 
      "separable boundary conditions", 
      "differential equations", 
      "operator polynomials", 
      "eigenvalue parameter", 
      "value problem", 
      "eigenvalues", 
      "asymptotics", 
      "equations", 
      "problem", 
      "polynomials", 
      "operators", 
      "class", 
      "parameters", 
      "terms", 
      "conditions", 
      "location"
    ], 
    "name": "Asymptotics of the Eigenvalues of Self-adjoint Fourth Order Boundary Value Problems", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138331790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12591-021-00567-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12591-021-00567-7", 
      "https://app.dimensions.ai/details/publication/pub.1138331790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_879.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12591-021-00567-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00567-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00567-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00567-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00567-7'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      22 PREDICATES      51 URIs      39 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12591-021-00567-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd8bb5b7acdee4977ac3bd4d66ad002cf
4 schema:citation sg:pub.10.1007/978-3-319-17070-1
5 sg:pub.10.1007/bf03322121
6 sg:pub.10.1186/s13661-015-0341-5
7 sg:pub.10.1186/s13661-017-0768-y
8 schema:datePublished 2021-05-26
9 schema:datePublishedReg 2021-05-26
10 schema:description A regular fourth order differential equation which depends quadratically on the eigenvalue parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} is considered with classes of separable boundary conditions, where exactly one of the boundary conditions depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} linearly. This problem is described by a quadratic operator polynomial with self-adjoint operators. The location of the eigenvalues is investigated and the first four terms of the eigenvalues are provided.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1136107
15 schema:keywords asymptotics
16 boundary conditions
17 boundary value problem
18 class
19 conditions
20 differential equations
21 eigenvalue parameter
22 eigenvalues
23 equations
24 fourth-order boundary value problems
25 fourth-order differential equation
26 location
27 operator polynomials
28 operators
29 order boundary value problems
30 order differential equations
31 parameters
32 polynomials
33 problem
34 quadratic operator polynomials
35 self-adjoint operators
36 separable boundary conditions
37 terms
38 value problem
39 schema:name Asymptotics of the Eigenvalues of Self-adjoint Fourth Order Boundary Value Problems
40 schema:pagination 1-22
41 schema:productId N34e4e907984d4424a32c52fcedf08bfa
42 N9a1d89518d0e487d9cb0fc4d3ea7af86
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138331790
44 https://doi.org/10.1007/s12591-021-00567-7
45 schema:sdDatePublished 2022-05-20T07:37
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N08571d97a6b142ac96eea7baed1810d1
48 schema:url https://doi.org/10.1007/s12591-021-00567-7
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N08571d97a6b142ac96eea7baed1810d1 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N34e4e907984d4424a32c52fcedf08bfa schema:name doi
55 schema:value 10.1007/s12591-021-00567-7
56 rdf:type schema:PropertyValue
57 N9a1d89518d0e487d9cb0fc4d3ea7af86 schema:name dimensions_id
58 schema:value pub.1138331790
59 rdf:type schema:PropertyValue
60 Nd8bb5b7acdee4977ac3bd4d66ad002cf rdf:first sg:person.07456201155.04
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136107 schema:issn 0971-3514
69 0974-6870
70 schema:name Differential Equations and Dynamical Systems
71 schema:publisher Springer Nature
72 rdf:type schema:Periodical
73 sg:person.07456201155.04 schema:affiliation grid-institutes:grid.11951.3d
74 schema:familyName Zinsou
75 schema:givenName Bertin
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456201155.04
77 rdf:type schema:Person
78 sg:pub.10.1007/978-3-319-17070-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037185142
79 https://doi.org/10.1007/978-3-319-17070-1
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf03322121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081178
82 https://doi.org/10.1007/bf03322121
83 rdf:type schema:CreativeWork
84 sg:pub.10.1186/s13661-015-0341-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043345
85 https://doi.org/10.1186/s13661-015-0341-5
86 rdf:type schema:CreativeWork
87 sg:pub.10.1186/s13661-017-0768-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252652
88 https://doi.org/10.1186/s13661-017-0768-y
89 rdf:type schema:CreativeWork
90 grid-institutes:grid.11951.3d schema:alternateName School of Mathematics, University of Witwatersrand, Private Bag 3 Wits 2050, Johannesburg, South Africa
91 schema:name School of Mathematics, University of Witwatersrand, Private Bag 3 Wits 2050, Johannesburg, South Africa
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...