Ontology type: schema:ScholarlyArticle
2021-04-30
AUTHORS ABSTRACTThe propagation of ionizing cylindrical magnetogasdynamic shock wave in rotational axisymmetric self-gravitating perfect gas under isothermal flow condition is investigated. Mathematical model for the considered problem using system of PDEs is presented. The density, magnetic pressure, azimuthal fluid velocity and axial fluid velocity are assumed to be varying according to power law with distance from the axis of symmetry in the undisturbed medium. The flow variables are expanded in power series and using that the zeroth and first order approximations are discussed. Solutions for zeroth order approximation are constructed in approximate analytical form. The effect of flow parameters namely: gravitational parameter G0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{0}$$\end{document}, shock Cowling number C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}$$\end{document}, rotational parameter L and ambient density variation index q are studied on the flow variables and total energy of disturbance. Distribution of gasdynamical quantities are discussed. Radial fluid velocity and mass tends to zero near the axis of symmetry in general; but magnetic pressure, axial fluid velocity, non-dimensional components of vorticity vector lθ(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\theta }^{(0)}$$\end{document} and lz(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{z}^{(0)}$$\end{document} tend to positive infinity near the axis of symmetry. Azimuthal fluid velocity decreases as we move inwards from the shock to the axis of symmetry. Density and pressure vanish near the axis of symmetry thus forming a vacuum there. J0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{0}$$\end{document} decreases with increase in value of ambient density variation index q or gravitational parameter G0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{0}$$\end{document}; whereas it increases with increase in value of rotational parameter L or shock Cowling number C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}$$\end{document}. More... »
PAGES1-27
http://scigraph.springernature.com/pub.10.1007/s12591-021-00566-8
DOIhttp://dx.doi.org/10.1007/s12591-021-00566-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1137710546
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India",
"id": "http://www.grid.ac/institutes/grid.419983.e",
"name": [
"Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India"
],
"type": "Organization"
},
"familyName": "Nath",
"givenName": "G.",
"id": "sg:person.012645561605.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645561605.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India",
"id": "http://www.grid.ac/institutes/grid.419983.e",
"name": [
"Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "Sumeeta",
"id": "sg:person.010452553655.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452553655.21"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/b:jamt.0000030320.77965.c1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025767930",
"https://doi.org/10.1023/b:jamt.0000030320.77965.c1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12036-019-9616-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1123214816",
"https://doi.org/10.1007/s12036-019-9616-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00661159",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041173841",
"https://doi.org/10.1007/bf00661159"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12036-019-9615-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1123054383",
"https://doi.org/10.1007/s12036-019-9615-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01590878",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014810117",
"https://doi.org/10.1007/bf01590878"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10509-015-2615-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047870252",
"https://doi.org/10.1007/s10509-015-2615-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjb/e2003-00218-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036479916",
"https://doi.org/10.1140/epjb/e2003-00218-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00193-013-0474-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012448192",
"https://doi.org/10.1007/s00193-013-0474-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12036-020-09638-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129967008",
"https://doi.org/10.1007/s12036-020-09638-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s100510070238",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022706255",
"https://doi.org/10.1007/s100510070238"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40094-014-0131-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028548546",
"https://doi.org/10.1007/s40094-014-0131-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00413198",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003044461",
"https://doi.org/10.1007/bf00413198"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10891-018-1862-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107643454",
"https://doi.org/10.1007/s10891-018-1862-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-04-30",
"datePublishedReg": "2021-04-30",
"description": "The propagation of ionizing cylindrical magnetogasdynamic shock wave in rotational axisymmetric self-gravitating perfect gas under isothermal flow condition is investigated. Mathematical model for the considered problem using system of PDEs is presented. The density, magnetic pressure, azimuthal fluid velocity and axial fluid velocity are assumed to be varying according to power law with distance from the axis of symmetry in the undisturbed medium. The flow variables are expanded in power series and using that the zeroth and first order approximations are discussed. Solutions for zeroth order approximation are constructed in approximate analytical form. The effect of flow parameters namely: gravitational parameter G0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_{0}$$\\end{document}, shock Cowling number C0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_{0}$$\\end{document}, rotational parameter L and ambient density variation index q are studied on the flow variables and total energy of disturbance. Distribution of gasdynamical quantities are discussed. Radial fluid velocity and mass tends to zero near the axis of symmetry in general; but magnetic pressure, axial fluid velocity, non-dimensional components of vorticity vector l\u03b8(0)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$l_{\\theta }^{(0)}$$\\end{document} and lz(0)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$l_{z}^{(0)}$$\\end{document} tend to positive infinity near the axis of symmetry. Azimuthal fluid velocity decreases as we move inwards from the shock to the axis of symmetry. Density and pressure vanish near the axis of symmetry thus forming a vacuum there. J0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_{0}$$\\end{document} decreases with increase in value of ambient density variation index q or gravitational parameter G0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_{0}$$\\end{document}; whereas it increases with increase in value of rotational parameter L or shock Cowling number C0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_{0}$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s12591-021-00566-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136107",
"issn": [
"0971-3514",
"0974-6870"
],
"name": "Differential Equations and Dynamical Systems",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"shock Cowling number",
"magnetogasdynamic shock waves",
"azimuthal fluid velocity",
"axis of symmetry",
"Cowling number",
"fluid velocity",
"self-gravitating perfect gas",
"order approximation",
"gravitational parameter",
"index q",
"axial fluid velocity",
"flow variables",
"perfect gas",
"magnetic pressure",
"system of PDEs",
"radial fluid velocity",
"approximate analytical solution",
"approximate analytical form",
"first-order approximation",
"shock waves",
"undisturbed medium",
"isothermal flow conditions",
"gasdynamical quantities",
"mathematical model",
"power series",
"pressure vanish",
"analytical solution",
"analytical form",
"parameter L",
"positive infinity",
"isothermal flow",
"vorticity vector",
"power law",
"symmetry",
"flow parameters",
"approximation",
"flow conditions",
"velocity",
"total energy",
"waves",
"PDEs",
"parameters",
"solution",
"infinity",
"zeroth",
"vanishes",
"gas",
"propagation",
"axis",
"variables",
"density",
"problem",
"law",
"pressure",
"flow",
"vacuum",
"number",
"vector",
"model",
"distribution",
"disturbances",
"energy",
"quantity",
"system",
"values",
"distance",
"increase",
"conditions",
"form",
"components",
"medium",
"mass",
"inwards",
"effect",
"series",
"shock"
],
"name": "Approximate Analytical Solution for Ionizing Cylindrical Magnetogasdynamic Shock Wave in Rotational Axisymmetric Self-Gravitating Perfect Gas: Isothermal Flow",
"pagination": "1-27",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1137710546"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12591-021-00566-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12591-021-00566-8",
"https://app.dimensions.ai/details/publication/pub.1137710546"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_884.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12591-021-00566-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00566-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00566-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00566-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00566-8'
This table displays all metadata directly associated to this object as RDF triples.
187 TRIPLES
22 PREDICATES
112 URIs
91 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12591-021-00566-8 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N89dd10b4e5174c66a3472cad62f70af1 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00413198 |
5 | ″ | ″ | sg:pub.10.1007/bf00661159 |
6 | ″ | ″ | sg:pub.10.1007/bf01590878 |
7 | ″ | ″ | sg:pub.10.1007/s00193-013-0474-3 |
8 | ″ | ″ | sg:pub.10.1007/s100510070238 |
9 | ″ | ″ | sg:pub.10.1007/s10509-015-2615-x |
10 | ″ | ″ | sg:pub.10.1007/s10891-018-1862-4 |
11 | ″ | ″ | sg:pub.10.1007/s12036-019-9615-0 |
12 | ″ | ″ | sg:pub.10.1007/s12036-019-9616-z |
13 | ″ | ″ | sg:pub.10.1007/s12036-020-09638-7 |
14 | ″ | ″ | sg:pub.10.1007/s40094-014-0131-y |
15 | ″ | ″ | sg:pub.10.1023/b:jamt.0000030320.77965.c1 |
16 | ″ | ″ | sg:pub.10.1140/epjb/e2003-00218-0 |
17 | ″ | schema:datePublished | 2021-04-30 |
18 | ″ | schema:datePublishedReg | 2021-04-30 |
19 | ″ | schema:description | The propagation of ionizing cylindrical magnetogasdynamic shock wave in rotational axisymmetric self-gravitating perfect gas under isothermal flow condition is investigated. Mathematical model for the considered problem using system of PDEs is presented. The density, magnetic pressure, azimuthal fluid velocity and axial fluid velocity are assumed to be varying according to power law with distance from the axis of symmetry in the undisturbed medium. The flow variables are expanded in power series and using that the zeroth and first order approximations are discussed. Solutions for zeroth order approximation are constructed in approximate analytical form. The effect of flow parameters namely: gravitational parameter G0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{0}$$\end{document}, shock Cowling number C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}$$\end{document}, rotational parameter L and ambient density variation index q are studied on the flow variables and total energy of disturbance. Distribution of gasdynamical quantities are discussed. Radial fluid velocity and mass tends to zero near the axis of symmetry in general; but magnetic pressure, axial fluid velocity, non-dimensional components of vorticity vector lθ(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\theta }^{(0)}$$\end{document} and lz(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{z}^{(0)}$$\end{document} tend to positive infinity near the axis of symmetry. Azimuthal fluid velocity decreases as we move inwards from the shock to the axis of symmetry. Density and pressure vanish near the axis of symmetry thus forming a vacuum there. J0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{0}$$\end{document} decreases with increase in value of ambient density variation index q or gravitational parameter G0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{0}$$\end{document}; whereas it increases with increase in value of rotational parameter L or shock Cowling number C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}$$\end{document}. |
20 | ″ | schema:genre | article |
21 | ″ | schema:inLanguage | en |
22 | ″ | schema:isAccessibleForFree | false |
23 | ″ | schema:isPartOf | sg:journal.1136107 |
24 | ″ | schema:keywords | Cowling number |
25 | ″ | ″ | PDEs |
26 | ″ | ″ | analytical form |
27 | ″ | ″ | analytical solution |
28 | ″ | ″ | approximate analytical form |
29 | ″ | ″ | approximate analytical solution |
30 | ″ | ″ | approximation |
31 | ″ | ″ | axial fluid velocity |
32 | ″ | ″ | axis |
33 | ″ | ″ | axis of symmetry |
34 | ″ | ″ | azimuthal fluid velocity |
35 | ″ | ″ | components |
36 | ″ | ″ | conditions |
37 | ″ | ″ | density |
38 | ″ | ″ | distance |
39 | ″ | ″ | distribution |
40 | ″ | ″ | disturbances |
41 | ″ | ″ | effect |
42 | ″ | ″ | energy |
43 | ″ | ″ | first-order approximation |
44 | ″ | ″ | flow |
45 | ″ | ″ | flow conditions |
46 | ″ | ″ | flow parameters |
47 | ″ | ″ | flow variables |
48 | ″ | ″ | fluid velocity |
49 | ″ | ″ | form |
50 | ″ | ″ | gas |
51 | ″ | ″ | gasdynamical quantities |
52 | ″ | ″ | gravitational parameter |
53 | ″ | ″ | increase |
54 | ″ | ″ | index q |
55 | ″ | ″ | infinity |
56 | ″ | ″ | inwards |
57 | ″ | ″ | isothermal flow |
58 | ″ | ″ | isothermal flow conditions |
59 | ″ | ″ | law |
60 | ″ | ″ | magnetic pressure |
61 | ″ | ″ | magnetogasdynamic shock waves |
62 | ″ | ″ | mass |
63 | ″ | ″ | mathematical model |
64 | ″ | ″ | medium |
65 | ″ | ″ | model |
66 | ″ | ″ | number |
67 | ″ | ″ | order approximation |
68 | ″ | ″ | parameter L |
69 | ″ | ″ | parameters |
70 | ″ | ″ | perfect gas |
71 | ″ | ″ | positive infinity |
72 | ″ | ″ | power law |
73 | ″ | ″ | power series |
74 | ″ | ″ | pressure |
75 | ″ | ″ | pressure vanish |
76 | ″ | ″ | problem |
77 | ″ | ″ | propagation |
78 | ″ | ″ | quantity |
79 | ″ | ″ | radial fluid velocity |
80 | ″ | ″ | self-gravitating perfect gas |
81 | ″ | ″ | series |
82 | ″ | ″ | shock |
83 | ″ | ″ | shock Cowling number |
84 | ″ | ″ | shock waves |
85 | ″ | ″ | solution |
86 | ″ | ″ | symmetry |
87 | ″ | ″ | system |
88 | ″ | ″ | system of PDEs |
89 | ″ | ″ | total energy |
90 | ″ | ″ | undisturbed medium |
91 | ″ | ″ | vacuum |
92 | ″ | ″ | values |
93 | ″ | ″ | vanishes |
94 | ″ | ″ | variables |
95 | ″ | ″ | vector |
96 | ″ | ″ | velocity |
97 | ″ | ″ | vorticity vector |
98 | ″ | ″ | waves |
99 | ″ | ″ | zeroth |
100 | ″ | schema:name | Approximate Analytical Solution for Ionizing Cylindrical Magnetogasdynamic Shock Wave in Rotational Axisymmetric Self-Gravitating Perfect Gas: Isothermal Flow |
101 | ″ | schema:pagination | 1-27 |
102 | ″ | schema:productId | N269cdf63606f492c9be9cc8fe20c1d38 |
103 | ″ | ″ | Ne890c4f2c915446c87766908121ecb0f |
104 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1137710546 |
105 | ″ | ″ | https://doi.org/10.1007/s12591-021-00566-8 |
106 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
107 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
108 | ″ | schema:sdPublisher | Nafb5c1f7ef6b43caba8d6cdfbae369f2 |
109 | ″ | schema:url | https://doi.org/10.1007/s12591-021-00566-8 |
110 | ″ | sgo:license | sg:explorer/license/ |
111 | ″ | sgo:sdDataset | articles |
112 | ″ | rdf:type | schema:ScholarlyArticle |
113 | N269cdf63606f492c9be9cc8fe20c1d38 | schema:name | dimensions_id |
114 | ″ | schema:value | pub.1137710546 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | N89dd10b4e5174c66a3472cad62f70af1 | rdf:first | sg:person.012645561605.23 |
117 | ″ | rdf:rest | Na444e639220d441bb871999f3e0f17d2 |
118 | Na444e639220d441bb871999f3e0f17d2 | rdf:first | sg:person.010452553655.21 |
119 | ″ | rdf:rest | rdf:nil |
120 | Nafb5c1f7ef6b43caba8d6cdfbae369f2 | schema:name | Springer Nature - SN SciGraph project |
121 | ″ | rdf:type | schema:Organization |
122 | Ne890c4f2c915446c87766908121ecb0f | schema:name | doi |
123 | ″ | schema:value | 10.1007/s12591-021-00566-8 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Mathematical Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Pure Mathematics |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | sg:journal.1136107 | schema:issn | 0971-3514 |
132 | ″ | ″ | 0974-6870 |
133 | ″ | schema:name | Differential Equations and Dynamical Systems |
134 | ″ | schema:publisher | Springer Nature |
135 | ″ | rdf:type | schema:Periodical |
136 | sg:person.010452553655.21 | schema:affiliation | grid-institutes:grid.419983.e |
137 | ″ | schema:familyName | Singh |
138 | ″ | schema:givenName | Sumeeta |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452553655.21 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.012645561605.23 | schema:affiliation | grid-institutes:grid.419983.e |
142 | ″ | schema:familyName | Nath |
143 | ″ | schema:givenName | G. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645561605.23 |
145 | ″ | rdf:type | schema:Person |
146 | sg:pub.10.1007/bf00413198 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003044461 |
147 | ″ | ″ | https://doi.org/10.1007/bf00413198 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1007/bf00661159 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041173841 |
150 | ″ | ″ | https://doi.org/10.1007/bf00661159 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1007/bf01590878 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014810117 |
153 | ″ | ″ | https://doi.org/10.1007/bf01590878 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1007/s00193-013-0474-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012448192 |
156 | ″ | ″ | https://doi.org/10.1007/s00193-013-0474-3 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | sg:pub.10.1007/s100510070238 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022706255 |
159 | ″ | ″ | https://doi.org/10.1007/s100510070238 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | sg:pub.10.1007/s10509-015-2615-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047870252 |
162 | ″ | ″ | https://doi.org/10.1007/s10509-015-2615-x |
163 | ″ | rdf:type | schema:CreativeWork |
164 | sg:pub.10.1007/s10891-018-1862-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1107643454 |
165 | ″ | ″ | https://doi.org/10.1007/s10891-018-1862-4 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | sg:pub.10.1007/s12036-019-9615-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123054383 |
168 | ″ | ″ | https://doi.org/10.1007/s12036-019-9615-0 |
169 | ″ | rdf:type | schema:CreativeWork |
170 | sg:pub.10.1007/s12036-019-9616-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123214816 |
171 | ″ | ″ | https://doi.org/10.1007/s12036-019-9616-z |
172 | ″ | rdf:type | schema:CreativeWork |
173 | sg:pub.10.1007/s12036-020-09638-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1129967008 |
174 | ″ | ″ | https://doi.org/10.1007/s12036-020-09638-7 |
175 | ″ | rdf:type | schema:CreativeWork |
176 | sg:pub.10.1007/s40094-014-0131-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028548546 |
177 | ″ | ″ | https://doi.org/10.1007/s40094-014-0131-y |
178 | ″ | rdf:type | schema:CreativeWork |
179 | sg:pub.10.1023/b:jamt.0000030320.77965.c1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025767930 |
180 | ″ | ″ | https://doi.org/10.1023/b:jamt.0000030320.77965.c1 |
181 | ″ | rdf:type | schema:CreativeWork |
182 | sg:pub.10.1140/epjb/e2003-00218-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036479916 |
183 | ″ | ″ | https://doi.org/10.1140/epjb/e2003-00218-0 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | grid-institutes:grid.419983.e | schema:alternateName | Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India |
186 | ″ | schema:name | Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, 211004, Prayagraj, Uttar Pradesh, India |
187 | ″ | rdf:type | schema:Organization |