Reduction of a Tri-Modal Lorenz Model of Ferrofluid Convection to a Cubic–Quintic Ginzburg–Landau Equation Using the Center Manifold Theorem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-02-28

AUTHORS

P. G. Siddheshwar, T. S. Sushma

ABSTRACT

The differential geometric method of the center manifold theorem is applied to the magnetic-Lorenz model of ferrofluid convection in an electrically non-conducting ferrofluid. The analytically intractable tri-modal nonlinear autonomous system (magnetic-Lorenz model) is reduced to an analytically tractable uni-modal cubic–quintic Ginzburg–Landau equation. The inadequacy of the cubic Ginzburg–Landau equation and the need for the cubic–quintic one is shown in the paper. The heat transport is quantified using the solution of the cubic–quintic equation and the effect of ferrofluid parameters on it is demonstrated. The stable and unstable regions in the conductive regime and the conductive-convective regime is depicted using a bifurcation diagram. The noticeable discrepancy between the results of the two models is highlighted and the quintic non-linearity effects are delineated. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12591-021-00565-9

DOI

http://dx.doi.org/10.1007/s12591-021-00565-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135822551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, CHRIST (Deemed to be University), Hosur Road Campus, 560029, Bengaluru, India", 
          "id": "http://www.grid.ac/institutes/grid.440672.3", 
          "name": [
            "Department of Mathematics, CHRIST (Deemed to be University), Hosur Road Campus, 560029, Bengaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddheshwar", 
        "givenName": "P. G.", 
        "id": "sg:person.07475172731.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07475172731.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics (VTU RC), CMR Institute of Technology, Bengaluru, India", 
          "id": "http://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Mathematics, B.N.M. Institute of Technology, 560070, Bengaluru, India", 
            "Department of Mathematics (VTU RC), CMR Institute of Technology, Bengaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sushma", 
        "givenName": "T. S.", 
        "id": "sg:person.07366151647.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366151647.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-5929-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013220410", 
          "https://doi.org/10.1007/978-1-4612-5929-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01014273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037187796", 
          "https://doi.org/10.1007/bf01014273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2015-02470-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020461730", 
          "https://doi.org/10.1140/epjst/e2015-02470-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-01123-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111873609", 
          "https://doi.org/10.1007/978-3-030-01123-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02742713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031864213", 
          "https://doi.org/10.1007/bf02742713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42452-019-1549-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122307198", 
          "https://doi.org/10.1007/s42452-019-1549-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00962056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004255014", 
          "https://doi.org/10.1007/bf00962056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10665-020-10062-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130499172", 
          "https://doi.org/10.1007/s10665-020-10062-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-28", 
    "datePublishedReg": "2021-02-28", 
    "description": "The differential geometric method of the center manifold theorem is applied to the magnetic-Lorenz model of ferrofluid convection in an electrically non-conducting ferrofluid. The analytically intractable tri-modal nonlinear autonomous system (magnetic-Lorenz model) is reduced to an analytically tractable uni-modal cubic\u2013quintic Ginzburg\u2013Landau equation. The inadequacy of the cubic Ginzburg\u2013Landau equation and the need for the cubic\u2013quintic one is shown in the paper. The heat transport is quantified using the solution of the cubic\u2013quintic equation and the effect of ferrofluid parameters on it is demonstrated. The stable and unstable regions in the conductive regime and the conductive-convective regime is depicted using a bifurcation diagram. The noticeable discrepancy between the results of the two models is highlighted and the quintic non-linearity effects are delineated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12591-021-00565-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136107", 
        "issn": [
          "0971-3514", 
          "0974-6870"
        ], 
        "name": "Differential Equations and Dynamical Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "center manifold theorem", 
      "Ginzburg-Landau equation", 
      "manifold theorem", 
      "cubic Ginzburg-Landau equation", 
      "cubic-quintic Ginzburg-Landau equation", 
      "differential geometric methods", 
      "ferrofluid convection", 
      "Landau equation", 
      "Lorenz model", 
      "geometric method", 
      "bifurcation diagrams", 
      "equations", 
      "non-linearity effects", 
      "unstable region", 
      "theorem", 
      "heat transport", 
      "autonomous systems", 
      "Ginzburg", 
      "noticeable discrepancies", 
      "model", 
      "convection", 
      "ferrofluid", 
      "regime", 
      "conductive regime", 
      "solution", 
      "diagram", 
      "parameters", 
      "system", 
      "one", 
      "transport", 
      "discrepancy", 
      "results", 
      "effect", 
      "region", 
      "inadequacy", 
      "method", 
      "reduction", 
      "need", 
      "paper"
    ], 
    "name": "Reduction of a Tri-Modal Lorenz Model of Ferrofluid Convection to a Cubic\u2013Quintic Ginzburg\u2013Landau Equation Using the Center Manifold Theorem", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135822551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12591-021-00565-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12591-021-00565-9", 
      "https://app.dimensions.ai/details/publication/pub.1135822551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12591-021-00565-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00565-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00565-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00565-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12591-021-00565-9'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      71 URIs      54 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12591-021-00565-9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N1d126d702fbd48d7851272010cac65f5
4 schema:citation sg:pub.10.1007/978-1-4612-5929-9
5 sg:pub.10.1007/978-3-030-01123-9_6
6 sg:pub.10.1007/bf00962056
7 sg:pub.10.1007/bf01014273
8 sg:pub.10.1007/bf02742713
9 sg:pub.10.1007/bfb0089647
10 sg:pub.10.1007/s10665-020-10062-7
11 sg:pub.10.1007/s42452-019-1549-2
12 sg:pub.10.1140/epjst/e2015-02470-3
13 schema:datePublished 2021-02-28
14 schema:datePublishedReg 2021-02-28
15 schema:description The differential geometric method of the center manifold theorem is applied to the magnetic-Lorenz model of ferrofluid convection in an electrically non-conducting ferrofluid. The analytically intractable tri-modal nonlinear autonomous system (magnetic-Lorenz model) is reduced to an analytically tractable uni-modal cubic–quintic Ginzburg–Landau equation. The inadequacy of the cubic Ginzburg–Landau equation and the need for the cubic–quintic one is shown in the paper. The heat transport is quantified using the solution of the cubic–quintic equation and the effect of ferrofluid parameters on it is demonstrated. The stable and unstable regions in the conductive regime and the conductive-convective regime is depicted using a bifurcation diagram. The noticeable discrepancy between the results of the two models is highlighted and the quintic non-linearity effects are delineated.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf sg:journal.1136107
20 schema:keywords Ginzburg
21 Ginzburg-Landau equation
22 Landau equation
23 Lorenz model
24 autonomous systems
25 bifurcation diagrams
26 center manifold theorem
27 conductive regime
28 convection
29 cubic Ginzburg-Landau equation
30 cubic-quintic Ginzburg-Landau equation
31 diagram
32 differential geometric methods
33 discrepancy
34 effect
35 equations
36 ferrofluid
37 ferrofluid convection
38 geometric method
39 heat transport
40 inadequacy
41 manifold theorem
42 method
43 model
44 need
45 non-linearity effects
46 noticeable discrepancies
47 one
48 paper
49 parameters
50 reduction
51 regime
52 region
53 results
54 solution
55 system
56 theorem
57 transport
58 unstable region
59 schema:name Reduction of a Tri-Modal Lorenz Model of Ferrofluid Convection to a Cubic–Quintic Ginzburg–Landau Equation Using the Center Manifold Theorem
60 schema:pagination 1-19
61 schema:productId N34ff9fa2d1944d79859fb12466737459
62 N5c2681a4ea214539a9d436d6e713768b
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135822551
64 https://doi.org/10.1007/s12591-021-00565-9
65 schema:sdDatePublished 2022-05-20T07:37
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N38ae35cc815f450694b68ea853b7c9bf
68 schema:url https://doi.org/10.1007/s12591-021-00565-9
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1d126d702fbd48d7851272010cac65f5 rdf:first sg:person.07475172731.41
73 rdf:rest Ndf60995450964fbf8644205d6bfeb2a8
74 N34ff9fa2d1944d79859fb12466737459 schema:name dimensions_id
75 schema:value pub.1135822551
76 rdf:type schema:PropertyValue
77 N38ae35cc815f450694b68ea853b7c9bf schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N5c2681a4ea214539a9d436d6e713768b schema:name doi
80 schema:value 10.1007/s12591-021-00565-9
81 rdf:type schema:PropertyValue
82 Ndf60995450964fbf8644205d6bfeb2a8 rdf:first sg:person.07366151647.45
83 rdf:rest rdf:nil
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
88 schema:name Applied Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136107 schema:issn 0971-3514
91 0974-6870
92 schema:name Differential Equations and Dynamical Systems
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.07366151647.45 schema:affiliation grid-institutes:grid.444321.4
96 schema:familyName Sushma
97 schema:givenName T. S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366151647.45
99 rdf:type schema:Person
100 sg:person.07475172731.41 schema:affiliation grid-institutes:grid.440672.3
101 schema:familyName Siddheshwar
102 schema:givenName P. G.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07475172731.41
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4612-5929-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013220410
106 https://doi.org/10.1007/978-1-4612-5929-9
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-030-01123-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111873609
109 https://doi.org/10.1007/978-3-030-01123-9_6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00962056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004255014
112 https://doi.org/10.1007/bf00962056
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01014273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037187796
115 https://doi.org/10.1007/bf01014273
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02742713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031864213
118 https://doi.org/10.1007/bf02742713
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bfb0089647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101449
121 https://doi.org/10.1007/bfb0089647
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10665-020-10062-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130499172
124 https://doi.org/10.1007/s10665-020-10062-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s42452-019-1549-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122307198
127 https://doi.org/10.1007/s42452-019-1549-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1140/epjst/e2015-02470-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461730
130 https://doi.org/10.1140/epjst/e2015-02470-3
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.440672.3 schema:alternateName Department of Mathematics, CHRIST (Deemed to be University), Hosur Road Campus, 560029, Bengaluru, India
133 schema:name Department of Mathematics, CHRIST (Deemed to be University), Hosur Road Campus, 560029, Bengaluru, India
134 rdf:type schema:Organization
135 grid-institutes:grid.444321.4 schema:alternateName Department of Mathematics (VTU RC), CMR Institute of Technology, Bengaluru, India
136 schema:name Department of Mathematics (VTU RC), CMR Institute of Technology, Bengaluru, India
137 Department of Mathematics, B.N.M. Institute of Technology, 560070, Bengaluru, India
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...