Identification of crucial elements for network integrity: a perturbation approach through graph spectral method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-14

AUTHORS

Vasundhara Gadiyaram, Anasuya Dighe, Saraswathi Vishveshwara

ABSTRACT

The complex behaviour of a network emerges as a product of all the interactions between its components as a single entity. The aim of system level investigations has been to identify emergent properties of a network. Identifying crucial components which are responsible for maintaining integrity of networks is essential, to understand or control them. This study presents a method to rank the participation of nodes and edges in a network using perturbation analysis to identify crucial players that contribute to the integrity of the network. The spectra of a network capture maximal features with minimal loss of information. Unlike earlier methods which evaluate perturbation in a network, based on the change in centralities or paths, the present method uses a network comparison score (Network Similarity Score) which quantifies changes at edge level to global entity level using graph spectral properties. The method is evaluated on realistic complex networks of protein structures of Muscarinic acetylcholine receptors. The important amino acid residues (nodes) and their interactions (edges) derived from the study have been correlated with experimental findings. The potential of perturbation score as a predictive tool for any real-world network is also discussed. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12572-018-0236-7

DOI

http://dx.doi.org/10.1007/s12572-018-0236-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110639012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, Karnataka, India", 
            "IISc Mathematics Initiative (IMI), Indian Institute of Science, 560012, Bangalore, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadiyaram", 
        "givenName": "Vasundhara", 
        "id": "sg:person.010216124037.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216124037.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, Karnataka, India", 
            "IISc Mathematics Initiative (IMI), Indian Institute of Science, 560012, Bangalore, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dighe", 
        "givenName": "Anasuya", 
        "id": "sg:person.014634321264.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634321264.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishveshwara", 
        "givenName": "Saraswathi", 
        "id": "sg:person.01321270220.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2014.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013966597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(78)90021-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017201320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018047307", 
          "https://doi.org/10.1038/nphys209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018047307", 
          "https://doi.org/10.1038/nphys209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/092986712799320556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023644092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701175104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027082572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029344801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029344801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262339", 
          "https://doi.org/10.1038/nature10753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157015907781695946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031928161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037578170", 
          "https://doi.org/10.1038/nrd2379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037825045", 
          "https://doi.org/10.1038/nature12735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.118701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049645399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.3058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054489997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035413p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035413p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comnet/cnw016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059481080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.036206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.036206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.25332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085931805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/97809553602060000722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088838765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1718449115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100427431"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-14", 
    "datePublishedReg": "2018-12-14", 
    "description": "The complex behaviour of a network emerges as a product of all the interactions between its components as a single entity. The aim of system level investigations has been to identify emergent properties of a network. Identifying crucial components which are responsible for maintaining integrity of networks is essential, to understand or control them. This study presents a method to rank the participation of nodes and edges in a network using perturbation analysis to identify crucial players that contribute to the integrity of the network. The spectra of a network capture maximal features with minimal loss of information. Unlike earlier methods which evaluate perturbation in a network, based on the change in centralities or paths, the present method uses a network comparison score (Network Similarity Score) which quantifies changes at edge level to global entity level using graph spectral properties. The method is evaluated on realistic complex networks of protein structures of Muscarinic acetylcholine receptors. The important amino acid residues (nodes) and their interactions (edges) derived from the study have been correlated with experimental findings. The potential of perturbation score as a predictive tool for any real-world network is also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12572-018-0236-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050051", 
        "issn": [
          "0975-0770", 
          "0975-5616"
        ], 
        "name": "International Journal of Advances in Engineering Sciences and Applied Mathematics", 
        "type": "Periodical"
      }
    ], 
    "name": "Identification of crucial elements for network integrity: a perturbation approach through graph spectral method", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f10ea94dfae00660bbd6671b0224b8a0d01f11534f8f4b13501bf2f156bd24d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12572-018-0236-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110639012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12572-018-0236-7", 
      "https://app.dimensions.ai/details/publication/pub.1110639012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57213_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12572-018-0236-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0236-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0236-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0236-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0236-7'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12572-018-0236-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6928713c1bdf4821b498872ab39b0e83
4 schema:citation sg:pub.10.1038/35019019
5 sg:pub.10.1038/nature10753
6 sg:pub.10.1038/nature12735
7 sg:pub.10.1038/nphys209
8 sg:pub.10.1038/nrd2379
9 https://doi.org/10.1002/prot.20444
10 https://doi.org/10.1002/prot.25332
11 https://doi.org/10.1006/jmbi.1999.3058
12 https://doi.org/10.1016/0378-8733(78)90021-7
13 https://doi.org/10.1016/j.compbiolchem.2014.08.023
14 https://doi.org/10.1016/j.neuroimage.2016.07.006
15 https://doi.org/10.1021/ja035413p
16 https://doi.org/10.1073/pnas.0701175104
17 https://doi.org/10.1073/pnas.1718449115
18 https://doi.org/10.1093/comnet/cnw016
19 https://doi.org/10.1103/physreve.85.036206
20 https://doi.org/10.1103/physrevlett.104.118701
21 https://doi.org/10.1103/physrevlett.86.3200
22 https://doi.org/10.1103/physrevlett.92.118701
23 https://doi.org/10.1107/97809553602060000722
24 https://doi.org/10.2174/092986712799320556
25 https://doi.org/10.2174/157015907781695946
26 schema:datePublished 2018-12-14
27 schema:datePublishedReg 2018-12-14
28 schema:description The complex behaviour of a network emerges as a product of all the interactions between its components as a single entity. The aim of system level investigations has been to identify emergent properties of a network. Identifying crucial components which are responsible for maintaining integrity of networks is essential, to understand or control them. This study presents a method to rank the participation of nodes and edges in a network using perturbation analysis to identify crucial players that contribute to the integrity of the network. The spectra of a network capture maximal features with minimal loss of information. Unlike earlier methods which evaluate perturbation in a network, based on the change in centralities or paths, the present method uses a network comparison score (Network Similarity Score) which quantifies changes at edge level to global entity level using graph spectral properties. The method is evaluated on realistic complex networks of protein structures of Muscarinic acetylcholine receptors. The important amino acid residues (nodes) and their interactions (edges) derived from the study have been correlated with experimental findings. The potential of perturbation score as a predictive tool for any real-world network is also discussed.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1050051
33 schema:name Identification of crucial elements for network integrity: a perturbation approach through graph spectral method
34 schema:pagination 1-14
35 schema:productId N796175047dac407287c2c88a3d024184
36 Naa4a9675185b4b11b7ae3da8159ec7d0
37 Ne865564fb75341a194d2fcb44b339f5c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110639012
39 https://doi.org/10.1007/s12572-018-0236-7
40 schema:sdDatePublished 2019-04-11T08:24
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N3ea9f64dd7f54c2fb67826f0e3d853af
43 schema:url https://link.springer.com/10.1007%2Fs12572-018-0236-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N3ea9f64dd7f54c2fb67826f0e3d853af schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N6928713c1bdf4821b498872ab39b0e83 rdf:first sg:person.010216124037.42
50 rdf:rest Ncceaf1fb49714977b16da14c30956154
51 N796175047dac407287c2c88a3d024184 schema:name dimensions_id
52 schema:value pub.1110639012
53 rdf:type schema:PropertyValue
54 N86e3b7cde2fe4ed8ba58b0d3d6d3de83 rdf:first sg:person.01321270220.41
55 rdf:rest rdf:nil
56 Naa4a9675185b4b11b7ae3da8159ec7d0 schema:name readcube_id
57 schema:value 1f10ea94dfae00660bbd6671b0224b8a0d01f11534f8f4b13501bf2f156bd24d
58 rdf:type schema:PropertyValue
59 Ncceaf1fb49714977b16da14c30956154 rdf:first sg:person.014634321264.02
60 rdf:rest N86e3b7cde2fe4ed8ba58b0d3d6d3de83
61 Ne865564fb75341a194d2fcb44b339f5c schema:name doi
62 schema:value 10.1007/s12572-018-0236-7
63 rdf:type schema:PropertyValue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:journal.1050051 schema:issn 0975-0770
71 0975-5616
72 schema:name International Journal of Advances in Engineering Sciences and Applied Mathematics
73 rdf:type schema:Periodical
74 sg:person.010216124037.42 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
75 schema:familyName Gadiyaram
76 schema:givenName Vasundhara
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216124037.42
78 rdf:type schema:Person
79 sg:person.01321270220.41 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
80 schema:familyName Vishveshwara
81 schema:givenName Saraswathi
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321270220.41
83 rdf:type schema:Person
84 sg:person.014634321264.02 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
85 schema:familyName Dighe
86 schema:givenName Anasuya
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634321264.02
88 rdf:type schema:Person
89 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
90 https://doi.org/10.1038/35019019
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/nature10753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262339
93 https://doi.org/10.1038/nature10753
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nature12735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825045
96 https://doi.org/10.1038/nature12735
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nphys209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018047307
99 https://doi.org/10.1038/nphys209
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nrd2379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037578170
102 https://doi.org/10.1038/nrd2379
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/prot.20444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049645399
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/prot.25332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085931805
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1006/jmbi.1999.3058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054489997
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0378-8733(78)90021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916901
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.compbiolchem.2014.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013966597
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.neuroimage.2016.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017201320
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/ja035413p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055833510
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1073/pnas.0701175104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027082572
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1073/pnas.1718449115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100427431
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/comnet/cnw016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059481080
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreve.85.036206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743226
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.104.118701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136646
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.86.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018922144
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.92.118701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029344801
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1107/97809553602060000722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088838765
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2174/092986712799320556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023644092
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2174/157015907781695946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031928161
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
139 schema:name IISc Mathematics Initiative (IMI), Indian Institute of Science, 560012, Bangalore, Karnataka, India
140 Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, Karnataka, India
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...