Multi-time-scale turbulent heat transfer model for predictions of various turbulent heat transfer phenomena View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Hirofumi Hattori, Kenji Tsutsui

ABSTRACT

The turbulent heat transfer model has been a useful and powerful tool in the calculation of turbulence heat transfer for designs of equipment with engineering and industrial problems. Among turbulent heat transfer models, two-equation turbulence models for both velocity and thermal fields are one of the best models because they have more accurate prediction performance and can carry out turbulence calculations at the proper calculation costs. In this study, in order to improve the prediction performance of two-equation heat transfer turbulence model in more complex problems of turbulent heat transfer, a turbulence model based on the multi-time-scale model proposed by Nagano and Hattori (Int J Heat Fluid Flow 51:221, 2015) for predictions of a velocity field is modified, and a turbulent heat transfer model with the multi-time-scale is newly proposed. The proposed turbulent heat transfer models are evaluated in complex fields of turbulent heat transfer problem such as a T-junction turbulent thermal mixing channel flow, a turbulent plane impinging jet with heat transfer and a turbulent plane wall jet with heat transfer, where databases of these complex turbulent heat transfer phenomena are obtained by our DNS. Based on the results, adequate improvement of the prediction performance of a proposed turbulent heat transfer model is validated. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12572-018-0234-9

DOI

http://dx.doi.org/10.1007/s12572-018-0234-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107221587


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.47716.33", 
          "name": [
            "Information and Analysis Technologies Division, Department of Technical Support, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Hirofumi", 
        "id": "sg:person.07540670355.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540670355.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.47716.33", 
          "name": [
            "Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsutsui", 
        "givenName": "Kenji", 
        "id": "sg:person.011724653267.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724653267.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0017-9310(94)90168-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001399026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(94)90168-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001399026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2006.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004330037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2014.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005532657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407799808915028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5983(96)00049-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012215119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2004.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023734145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(72)90076-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029767870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-007-9111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039126452", 
          "https://doi.org/10.1007/s10494-007-9111-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-007-9111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039126452", 
          "https://doi.org/10.1007/s10494-007-9111-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(94)00252-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040987914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(74)90150-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(74)90150-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3250532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062112581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3448633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062126954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/jsmeicjwsf.2005.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090216713"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The turbulent heat transfer model has been a useful and powerful tool in the calculation of turbulence heat transfer for designs of equipment with engineering and industrial problems. Among turbulent heat transfer models, two-equation turbulence models for both velocity and thermal fields are one of the best models because they have more accurate prediction performance and can carry out turbulence calculations at the proper calculation costs. In this study, in order to improve the prediction performance of two-equation heat transfer turbulence model in more complex problems of turbulent heat transfer, a turbulence model based on the multi-time-scale model proposed by Nagano and Hattori (Int J Heat Fluid Flow 51:221, 2015) for predictions of a velocity field is modified, and a turbulent heat transfer model with the multi-time-scale is newly proposed. The proposed turbulent heat transfer models are evaluated in complex fields of turbulent heat transfer problem such as a T-junction turbulent thermal mixing channel flow, a turbulent plane impinging jet with heat transfer and a turbulent plane wall jet with heat transfer, where databases of these complex turbulent heat transfer phenomena are obtained by our DNS. Based on the results, adequate improvement of the prediction performance of a proposed turbulent heat transfer model is validated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12572-018-0234-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6831937", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050051", 
        "issn": [
          "0975-0770", 
          "0975-5616"
        ], 
        "name": "International Journal of Advances in Engineering Sciences and Applied Mathematics", 
        "type": "Periodical"
      }
    ], 
    "name": "Multi-time-scale turbulent heat transfer model for predictions of various turbulent heat transfer phenomena", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "167f94a923e571306558e914a486cd2edde3577d69cbb1bf0ded3f128f1a07a3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12572-018-0234-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107221587"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12572-018-0234-9", 
      "https://app.dimensions.ai/details/publication/pub.1107221587"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12572-018-0234-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0234-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0234-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0234-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0234-9'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      38 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12572-018-0234-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncbaf8cce1e234b1795084c2faeb2ecab
4 schema:citation sg:pub.10.1007/s10494-007-9111-5
5 https://doi.org/10.1016/0017-9310(72)90076-2
6 https://doi.org/10.1016/0017-9310(94)00252-q
7 https://doi.org/10.1016/0017-9310(94)90168-6
8 https://doi.org/10.1016/0094-4548(74)90150-7
9 https://doi.org/10.1016/j.ijheatfluidflow.2004.05.004
10 https://doi.org/10.1016/j.ijheatfluidflow.2006.02.012
11 https://doi.org/10.1016/j.ijheatfluidflow.2014.10.020
12 https://doi.org/10.1016/s0169-5983(96)00049-4
13 https://doi.org/10.1080/10407799808915028
14 https://doi.org/10.1115/1.3250532
15 https://doi.org/10.1115/1.3448633
16 https://doi.org/10.1299/jsmeicjwsf.2005.117
17 schema:datePublished 2018-12
18 schema:datePublishedReg 2018-12-01
19 schema:description The turbulent heat transfer model has been a useful and powerful tool in the calculation of turbulence heat transfer for designs of equipment with engineering and industrial problems. Among turbulent heat transfer models, two-equation turbulence models for both velocity and thermal fields are one of the best models because they have more accurate prediction performance and can carry out turbulence calculations at the proper calculation costs. In this study, in order to improve the prediction performance of two-equation heat transfer turbulence model in more complex problems of turbulent heat transfer, a turbulence model based on the multi-time-scale model proposed by Nagano and Hattori (Int J Heat Fluid Flow 51:221, 2015) for predictions of a velocity field is modified, and a turbulent heat transfer model with the multi-time-scale is newly proposed. The proposed turbulent heat transfer models are evaluated in complex fields of turbulent heat transfer problem such as a T-junction turbulent thermal mixing channel flow, a turbulent plane impinging jet with heat transfer and a turbulent plane wall jet with heat transfer, where databases of these complex turbulent heat transfer phenomena are obtained by our DNS. Based on the results, adequate improvement of the prediction performance of a proposed turbulent heat transfer model is validated.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf sg:journal.1050051
24 schema:name Multi-time-scale turbulent heat transfer model for predictions of various turbulent heat transfer phenomena
25 schema:pagination 1-11
26 schema:productId N263ea508df6e40968f26518afac4eb8c
27 N83fbfab9f7354ac9938eecc6ad5f8367
28 Ne209981a691b40cf9765d0c727490a84
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107221587
30 https://doi.org/10.1007/s12572-018-0234-9
31 schema:sdDatePublished 2019-04-10T20:02
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ndc0116c6e7b445478f2b6679e1d01d5f
34 schema:url https://link.springer.com/10.1007%2Fs12572-018-0234-9
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N263ea508df6e40968f26518afac4eb8c schema:name dimensions_id
39 schema:value pub.1107221587
40 rdf:type schema:PropertyValue
41 N83fbfab9f7354ac9938eecc6ad5f8367 schema:name doi
42 schema:value 10.1007/s12572-018-0234-9
43 rdf:type schema:PropertyValue
44 Ncbaf8cce1e234b1795084c2faeb2ecab rdf:first sg:person.07540670355.51
45 rdf:rest Neb9061ce9c9a47ec9a3de6c8d5068fab
46 Ndc0116c6e7b445478f2b6679e1d01d5f schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Ne209981a691b40cf9765d0c727490a84 schema:name readcube_id
49 schema:value 167f94a923e571306558e914a486cd2edde3577d69cbb1bf0ded3f128f1a07a3
50 rdf:type schema:PropertyValue
51 Neb9061ce9c9a47ec9a3de6c8d5068fab rdf:first sg:person.011724653267.70
52 rdf:rest rdf:nil
53 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
54 schema:name Engineering
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
57 schema:name Interdisciplinary Engineering
58 rdf:type schema:DefinedTerm
59 sg:grant.6831937 http://pending.schema.org/fundedItem sg:pub.10.1007/s12572-018-0234-9
60 rdf:type schema:MonetaryGrant
61 sg:journal.1050051 schema:issn 0975-0770
62 0975-5616
63 schema:name International Journal of Advances in Engineering Sciences and Applied Mathematics
64 rdf:type schema:Periodical
65 sg:person.011724653267.70 schema:affiliation https://www.grid.ac/institutes/grid.47716.33
66 schema:familyName Tsutsui
67 schema:givenName Kenji
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724653267.70
69 rdf:type schema:Person
70 sg:person.07540670355.51 schema:affiliation https://www.grid.ac/institutes/grid.47716.33
71 schema:familyName Hattori
72 schema:givenName Hirofumi
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540670355.51
74 rdf:type schema:Person
75 sg:pub.10.1007/s10494-007-9111-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039126452
76 https://doi.org/10.1007/s10494-007-9111-5
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0017-9310(72)90076-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029767870
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0017-9310(94)00252-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1040987914
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0017-9310(94)90168-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001399026
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0094-4548(74)90150-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523634
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.ijheatfluidflow.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023734145
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.ijheatfluidflow.2006.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004330037
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.ijheatfluidflow.2014.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532657
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/s0169-5983(96)00049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012215119
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/10407799808915028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717474
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1115/1.3250532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112581
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1115/1.3448633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062126954
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1299/jsmeicjwsf.2005.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090216713
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.47716.33 schema:alternateName Nagoya Institute of Technology
103 schema:name Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
104 Information and Analysis Technologies Division, Department of Technical Support, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...