Condition number analysis of flow fields arising from CFD simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Krishna Chandran, K. Muralidhar

ABSTRACT

Condition numbers of pressure and velocity matrices obtained from an unstructured finite volume discretization of the three dimensional Navier–Stokes equations are studied for two distinct flow configurations. The exact condition number is calculated based on singular values. The continuous estimation of condition number of the velocity matrices with respect to the time varying velocity field is achieved through the Gershgorin theoretical bounds for the eigenvalues. The focus of the present study is on the analysis of flow dynamics with respect to the degree of ill-conditioning of the linear systems. For the two benchmark problems, condition numbers of pressure and velocity matrices are presented. The pressure matrix is shown to be more ill-conditioned than velocity and requires strong preconditioning. For a 3D lid-driven cavity, the appearance and disappearance of corner vortices at higher Reynolds number is clearly reflected in the condition number variation with time. In a second application of flow past a circular cylinder, condition number variation with time during the initial phase clearly reveals the onset of vortex shedding. The condition number based on Gershgorin bounds is also used to switch the SGS and ILU preconditioners for velocity matrices when they are well conditioned. Consequently, an overall reduction in the simulation time is demonstrated. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12572-018-0230-0

DOI

http://dx.doi.org/10.1007/s12572-018-0230-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106651975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Mechanical Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandran", 
        "givenName": "Krishna", 
        "id": "sg:person.011527010704.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527010704.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Mechanical Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muralidhar", 
        "givenName": "K.", 
        "id": "sg:person.010020247252.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020247252.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0024-3795(97)00330-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008566906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010338375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19980515)26:9<1003::aid-fld611>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016822949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19980515)26:9<1003::aid-fld611>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016822949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nla.1680010405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017809789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nla.1680010405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017809789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019621149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19980315)26:5<557::aid-fld638>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020116595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(89)90583-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020124731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2007.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024311132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.2301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033966054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2012.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036466164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7930(01)00083-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2008.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(84)90117-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049871245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2002.7176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049983099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052334006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.1650210505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.1650210505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0913035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144599363084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827500366124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/pcfd.2016.077297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067506515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108315023", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Condition numbers of pressure and velocity matrices obtained from an unstructured finite volume discretization of the three dimensional Navier\u2013Stokes equations are studied for two distinct flow configurations. The exact condition number is calculated based on singular values. The continuous estimation of condition number of the velocity matrices with respect to the time varying velocity field is achieved through the Gershgorin theoretical bounds for the eigenvalues. The focus of the present study is on the analysis of flow dynamics with respect to the degree of ill-conditioning of the linear systems. For the two benchmark problems, condition numbers of pressure and velocity matrices are presented. The pressure matrix is shown to be more ill-conditioned than velocity and requires strong preconditioning. For a 3D lid-driven cavity, the appearance and disappearance of corner vortices at higher Reynolds number is clearly reflected in the condition number variation with time. In a second application of flow past a circular cylinder, condition number variation with time during the initial phase clearly reveals the onset of vortex shedding. The condition number based on Gershgorin bounds is also used to switch the SGS and ILU preconditioners for velocity matrices when they are well conditioned. Consequently, an overall reduction in the simulation time is demonstrated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12572-018-0230-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050051", 
        "issn": [
          "0975-0770", 
          "0975-5616"
        ], 
        "name": "International Journal of Advances in Engineering Sciences and Applied Mathematics", 
        "type": "Periodical"
      }
    ], 
    "name": "Condition number analysis of flow fields arising from CFD simulations", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bdb5ee11433cbc99bbc6c1905d6b3b90899e7903d0313c9986621d055cd24589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12572-018-0230-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106651975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12572-018-0230-0", 
      "https://app.dimensions.ai/details/publication/pub.1106651975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s12572-018-0230-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0230-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0230-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0230-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12572-018-0230-0'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      47 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12572-018-0230-0 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8c4491730f45452c853a2507b2071d27
4 schema:citation https://app.dimensions.ai/details/publication/pub.1108315023
5 https://doi.org/10.1002/(sici)1097-0363(19980315)26:5<557::aid-fld638>3.0.co;2-r
6 https://doi.org/10.1002/(sici)1097-0363(19980515)26:9<1003::aid-fld611>3.0.co;2-w
7 https://doi.org/10.1002/fld.1650210505
8 https://doi.org/10.1002/fld.2301
9 https://doi.org/10.1002/nla.1680010405
10 https://doi.org/10.1006/jcph.2002.7176
11 https://doi.org/10.1016/0024-3795(84)90117-4
12 https://doi.org/10.1016/0024-3795(89)90583-1
13 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.036
14 https://doi.org/10.1016/j.jcp.2012.02.004
15 https://doi.org/10.1016/j.jcp.2013.01.004
16 https://doi.org/10.1016/j.jcp.2016.05.009
17 https://doi.org/10.1016/j.laa.2007.12.026
18 https://doi.org/10.1016/j.laa.2008.09.005
19 https://doi.org/10.1016/s0024-3795(97)00330-3
20 https://doi.org/10.1016/s0045-7930(01)00083-4
21 https://doi.org/10.1137/0913035
22 https://doi.org/10.1137/1.9780898718003
23 https://doi.org/10.1137/s0036144599363084
24 https://doi.org/10.1137/s1064827500366124
25 https://doi.org/10.1504/pcfd.2016.077297
26 schema:datePublished 2018-12
27 schema:datePublishedReg 2018-12-01
28 schema:description Condition numbers of pressure and velocity matrices obtained from an unstructured finite volume discretization of the three dimensional Navier–Stokes equations are studied for two distinct flow configurations. The exact condition number is calculated based on singular values. The continuous estimation of condition number of the velocity matrices with respect to the time varying velocity field is achieved through the Gershgorin theoretical bounds for the eigenvalues. The focus of the present study is on the analysis of flow dynamics with respect to the degree of ill-conditioning of the linear systems. For the two benchmark problems, condition numbers of pressure and velocity matrices are presented. The pressure matrix is shown to be more ill-conditioned than velocity and requires strong preconditioning. For a 3D lid-driven cavity, the appearance and disappearance of corner vortices at higher Reynolds number is clearly reflected in the condition number variation with time. In a second application of flow past a circular cylinder, condition number variation with time during the initial phase clearly reveals the onset of vortex shedding. The condition number based on Gershgorin bounds is also used to switch the SGS and ILU preconditioners for velocity matrices when they are well conditioned. Consequently, an overall reduction in the simulation time is demonstrated.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1050051
33 schema:name Condition number analysis of flow fields arising from CFD simulations
34 schema:pagination 1-14
35 schema:productId N9a967cd256ff488d95e16f2f0f0927d4
36 Ndf7e3da7f5fb46d7b68ea640b88cf938
37 Ne543554b4b5c48c187b00a21dee61013
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106651975
39 https://doi.org/10.1007/s12572-018-0230-0
40 schema:sdDatePublished 2019-04-10T17:45
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ncd6dfd0e19304163a6708ee9662ed48c
43 schema:url http://link.springer.com/10.1007/s12572-018-0230-0
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N8c4491730f45452c853a2507b2071d27 rdf:first sg:person.011527010704.19
48 rdf:rest Ndd4fe3da29414a8da47eec4dd387da3d
49 N9a967cd256ff488d95e16f2f0f0927d4 schema:name dimensions_id
50 schema:value pub.1106651975
51 rdf:type schema:PropertyValue
52 Ncd6dfd0e19304163a6708ee9662ed48c schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ndd4fe3da29414a8da47eec4dd387da3d rdf:first sg:person.010020247252.53
55 rdf:rest rdf:nil
56 Ndf7e3da7f5fb46d7b68ea640b88cf938 schema:name readcube_id
57 schema:value bdb5ee11433cbc99bbc6c1905d6b3b90899e7903d0313c9986621d055cd24589
58 rdf:type schema:PropertyValue
59 Ne543554b4b5c48c187b00a21dee61013 schema:name doi
60 schema:value 10.1007/s12572-018-0230-0
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
66 schema:name Applied Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1050051 schema:issn 0975-0770
69 0975-5616
70 schema:name International Journal of Advances in Engineering Sciences and Applied Mathematics
71 rdf:type schema:Periodical
72 sg:person.010020247252.53 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
73 schema:familyName Muralidhar
74 schema:givenName K.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020247252.53
76 rdf:type schema:Person
77 sg:person.011527010704.19 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
78 schema:familyName Chandran
79 schema:givenName Krishna
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527010704.19
81 rdf:type schema:Person
82 https://app.dimensions.ai/details/publication/pub.1108315023 schema:CreativeWork
83 https://doi.org/10.1002/(sici)1097-0363(19980315)26:5<557::aid-fld638>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116595
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/(sici)1097-0363(19980515)26:9<1003::aid-fld611>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1016822949
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/fld.1650210505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053715852
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/fld.2301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033966054
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/nla.1680010405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017809789
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1006/jcph.2002.7176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049983099
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0024-3795(84)90117-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049871245
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0024-3795(89)90583-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020124731
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019621149
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jcp.2012.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036466164
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.jcp.2013.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010338375
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jcp.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052334006
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.laa.2007.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024311132
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.laa.2008.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049044552
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0024-3795(97)00330-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008566906
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0045-7930(01)00083-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921580
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1137/0913035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857471
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1137/1.9780898718003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555810
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1137/s0036144599363084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878026
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/s1064827500366124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883766
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1504/pcfd.2016.077297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067506515
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
126 schema:name Department of Mechanical Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...