Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Keiichiro Koiwai, Hidehiro Kondo, Ikuo Hirono

ABSTRACT

Crustacean hemocytes, which have usually been classified morphologically based on methods using Giemsa or May-Giemsa stains, have recently been categorized using monoclonal antibodies or marker genes. However, these latter techniques are not yet widely used, and different classification methods are used for hemocytes among laboratories. Therefore, we aimed to develop a molecular classification method that can be widely used by researchers. The method we have developed uses lectins and magnetic-activated cell sorting (MACS) to isolate sub-populations of hemocytes. Two lectins, wheat germ agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin; LEL), characteristically bind to hemocytes, which allows them to be classified into three sub-populations. Furthermore, different sub-populations of hemocyte can be isolated by using LEL and MACS. These sub-populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of the gene transcripts were consistent with the results of a functional analysis reported previously. The lectin-based hemocyte isolation method developed in this study has good reproducibility. More... »

PAGES

1-12

Journal

TITLE

Fisheries Science

ISSUE

N/A

VOLUME

N/A

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12562-019-01311-5

    DOI

    http://dx.doi.org/10.1007/s12562-019-01311-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113095597


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo University of Marine Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412785.d", 
              "name": [
                "Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, 108-8477, Konan, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koiwai", 
            "givenName": "Keiichiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Marine Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412785.d", 
              "name": [
                "Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, 108-8477, Konan, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kondo", 
            "givenName": "Hidehiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Marine Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412785.d", 
              "name": [
                "Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, 108-8477, Konan, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirono", 
            "givenName": "Ikuo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00318667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000814596", 
              "https://doi.org/10.1007/bf00318667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00318667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000814596", 
              "https://doi.org/10.1007/bf00318667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1432-1033.1992.tb17313.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002029787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imbio.2005.10.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004023182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dci.2015.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006176148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2016/9032181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007989420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2015.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010708932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dci.2007.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011413344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2012.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015144420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015803168", 
              "https://doi.org/10.1038/nbt.1883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0044-8486(00)00418-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017503018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/fsim.1998.0185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018645502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7410.2003.tb00090.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018988517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7410.2003.tb00090.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018988517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.22.4436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019725071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021902674", 
              "https://doi.org/10.1186/1471-2105-12-323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3147/jsfp.33.421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023719744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0308734101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024133934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2012.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025221405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0105-2896.2004.00116.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026197535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2004.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026614242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m113.528885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026703501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2012.09.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028468016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2006.08.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029202621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dci.2015.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029218986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0105-2896.2004.00115.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030996131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1182/blood-2010-11-320614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032316164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1163/156854008x354993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034150110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1163/156854008x354993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034150110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibs.2015.03.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034181596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.201300387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034303091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1163/20021975-99990240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034458232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dci.2013.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035424601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035817137", 
              "https://doi.org/10.1038/nmeth.2089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0108486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0742-8413(95)02033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041552794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dci.2009.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041601338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3147/jsfp.27.217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042967972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/fsim.2000.0269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045313211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.2590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046436713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0145-305x(83)90004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047245107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0145-305x(83)90004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047245107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molimm.2006.09.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047494360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jipa.1997.4703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048456558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0040615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050771452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsi.2016.11.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051947215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1190689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062462462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082438928", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-30", 
        "datePublishedReg": "2019-03-30", 
        "description": "Crustacean hemocytes, which have usually been classified morphologically based on methods using Giemsa or May-Giemsa stains, have recently been categorized using monoclonal antibodies or marker genes. However, these latter techniques are not yet widely used, and different classification methods are used for hemocytes among laboratories. Therefore, we aimed to develop a molecular classification method that can be widely used by researchers. The method we have developed uses lectins and magnetic-activated cell sorting (MACS) to isolate sub-populations of hemocytes. Two lectins, wheat germ agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin; LEL), characteristically bind to hemocytes, which allows them to be classified into three sub-populations. Furthermore, different sub-populations of hemocyte can be isolated by using LEL and MACS. These sub-populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of the gene transcripts were consistent with the results of a functional analysis reported previously. The lectin-based hemocyte isolation method developed in this study has good reproducibility.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12562-019-01311-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6534302", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5851567", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023112", 
            "issn": [
              "0919-9268", 
              "1444-2906"
            ], 
            "name": "Fisheries Science", 
            "type": "Periodical"
          }
        ], 
        "name": "Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "53b52568d4bb7cfae13c42168ecbe827444bf5b1c2f3e3836807df0286e70ab4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12562-019-01311-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113095597"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12562-019-01311-5", 
          "https://app.dimensions.ai/details/publication/pub.1113095597"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68969_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12562-019-01311-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12562-019-01311-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12562-019-01311-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12562-019-01311-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12562-019-01311-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      70 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12562-019-01311-5 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nc7d0878e966a49baaf1d8a105f7eed00
    4 schema:citation sg:pub.10.1007/bf00318667
    5 sg:pub.10.1038/nbt.1883
    6 sg:pub.10.1038/nmeth.2089
    7 sg:pub.10.1186/1471-2105-12-323
    8 sg:pub.10.1186/gb-2010-11-3-r25
    9 https://app.dimensions.ai/details/publication/pub.1082438928
    10 https://doi.org/10.1002/pmic.201300387
    11 https://doi.org/10.1006/fsim.1998.0185
    12 https://doi.org/10.1006/fsim.2000.0269
    13 https://doi.org/10.1006/jipa.1997.4703
    14 https://doi.org/10.1016/0145-305x(83)90004-6
    15 https://doi.org/10.1016/0742-8413(95)02033-0
    16 https://doi.org/10.1016/j.dci.2007.02.001
    17 https://doi.org/10.1016/j.dci.2009.08.003
    18 https://doi.org/10.1016/j.dci.2013.01.001
    19 https://doi.org/10.1016/j.dci.2015.02.001
    20 https://doi.org/10.1016/j.dci.2015.12.009
    21 https://doi.org/10.1016/j.fsi.2004.05.007
    22 https://doi.org/10.1016/j.fsi.2006.08.018
    23 https://doi.org/10.1016/j.fsi.2012.08.008
    24 https://doi.org/10.1016/j.fsi.2012.09.018
    25 https://doi.org/10.1016/j.fsi.2012.09.021
    26 https://doi.org/10.1016/j.fsi.2015.02.001
    27 https://doi.org/10.1016/j.fsi.2016.11.034
    28 https://doi.org/10.1016/j.imbio.2005.10.015
    29 https://doi.org/10.1016/j.molimm.2006.09.021
    30 https://doi.org/10.1016/j.tibs.2015.03.013
    31 https://doi.org/10.1016/s0044-8486(00)00418-x
    32 https://doi.org/10.1073/pnas.0308734101
    33 https://doi.org/10.1074/jbc.m113.528885
    34 https://doi.org/10.1093/nar/25.17.3389
    35 https://doi.org/10.1093/nar/27.22.4436
    36 https://doi.org/10.1111/j.0105-2896.2004.00115.x
    37 https://doi.org/10.1111/j.0105-2896.2004.00116.x
    38 https://doi.org/10.1111/j.1432-1033.1992.tb17313.x
    39 https://doi.org/10.1111/j.1744-7410.2003.tb00090.x
    40 https://doi.org/10.1126/science.1190689
    41 https://doi.org/10.1155/2016/9032181
    42 https://doi.org/10.1163/156854008x354993
    43 https://doi.org/10.1163/20021975-99990240
    44 https://doi.org/10.1182/blood-2010-11-320614
    45 https://doi.org/10.1371/journal.pone.0040615
    46 https://doi.org/10.1371/journal.pone.0108486
    47 https://doi.org/10.3147/jsfp.27.217
    48 https://doi.org/10.3147/jsfp.33.421
    49 https://doi.org/10.7717/peerj.2590
    50 schema:datePublished 2019-03-30
    51 schema:datePublishedReg 2019-03-30
    52 schema:description Crustacean hemocytes, which have usually been classified morphologically based on methods using Giemsa or May-Giemsa stains, have recently been categorized using monoclonal antibodies or marker genes. However, these latter techniques are not yet widely used, and different classification methods are used for hemocytes among laboratories. Therefore, we aimed to develop a molecular classification method that can be widely used by researchers. The method we have developed uses lectins and magnetic-activated cell sorting (MACS) to isolate sub-populations of hemocytes. Two lectins, wheat germ agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin; LEL), characteristically bind to hemocytes, which allows them to be classified into three sub-populations. Furthermore, different sub-populations of hemocyte can be isolated by using LEL and MACS. These sub-populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of the gene transcripts were consistent with the results of a functional analysis reported previously. The lectin-based hemocyte isolation method developed in this study has good reproducibility.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree false
    56 schema:isPartOf sg:journal.1023112
    57 schema:name Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus
    58 schema:pagination 1-12
    59 schema:productId N036a70738cf6407aa079f59d959e76b7
    60 N12e036919df74e9eafc5c6679a50de9e
    61 N9221f7adff21406a8645f90e8fb37a50
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113095597
    63 https://doi.org/10.1007/s12562-019-01311-5
    64 schema:sdDatePublished 2019-04-11T13:24
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nf1f47b1dcbc5469da8ace37193bd666d
    67 schema:url https://link.springer.com/10.1007%2Fs12562-019-01311-5
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N036a70738cf6407aa079f59d959e76b7 schema:name readcube_id
    72 schema:value 53b52568d4bb7cfae13c42168ecbe827444bf5b1c2f3e3836807df0286e70ab4
    73 rdf:type schema:PropertyValue
    74 N12e036919df74e9eafc5c6679a50de9e schema:name dimensions_id
    75 schema:value pub.1113095597
    76 rdf:type schema:PropertyValue
    77 N1729d1b13dad43f4b2ff08acc4fcd884 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
    78 schema:familyName Kondo
    79 schema:givenName Hidehiro
    80 rdf:type schema:Person
    81 N4c859b82664244718f0d203872ecb0c1 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
    82 schema:familyName Hirono
    83 schema:givenName Ikuo
    84 rdf:type schema:Person
    85 N5d4057df848449c285b15ba6c7b5faae rdf:first N1729d1b13dad43f4b2ff08acc4fcd884
    86 rdf:rest N786558c10cec433e965fc4d7b666811b
    87 N786558c10cec433e965fc4d7b666811b rdf:first N4c859b82664244718f0d203872ecb0c1
    88 rdf:rest rdf:nil
    89 N9221f7adff21406a8645f90e8fb37a50 schema:name doi
    90 schema:value 10.1007/s12562-019-01311-5
    91 rdf:type schema:PropertyValue
    92 Nc7d0878e966a49baaf1d8a105f7eed00 rdf:first Nd3e234a182f04da49ce4639d15da50a2
    93 rdf:rest N5d4057df848449c285b15ba6c7b5faae
    94 Nd3e234a182f04da49ce4639d15da50a2 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
    95 schema:familyName Koiwai
    96 schema:givenName Keiichiro
    97 rdf:type schema:Person
    98 Nf1f47b1dcbc5469da8ace37193bd666d schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Biological Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Genetics
    105 rdf:type schema:DefinedTerm
    106 sg:grant.5851567 http://pending.schema.org/fundedItem sg:pub.10.1007/s12562-019-01311-5
    107 rdf:type schema:MonetaryGrant
    108 sg:grant.6534302 http://pending.schema.org/fundedItem sg:pub.10.1007/s12562-019-01311-5
    109 rdf:type schema:MonetaryGrant
    110 sg:journal.1023112 schema:issn 0919-9268
    111 1444-2906
    112 schema:name Fisheries Science
    113 rdf:type schema:Periodical
    114 sg:pub.10.1007/bf00318667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000814596
    115 https://doi.org/10.1007/bf00318667
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
    118 https://doi.org/10.1038/nbt.1883
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
    121 https://doi.org/10.1038/nmeth.2089
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
    124 https://doi.org/10.1186/1471-2105-12-323
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    127 https://doi.org/10.1186/gb-2010-11-3-r25
    128 rdf:type schema:CreativeWork
    129 https://app.dimensions.ai/details/publication/pub.1082438928 schema:CreativeWork
    130 https://doi.org/10.1002/pmic.201300387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034303091
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1006/fsim.1998.0185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018645502
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1006/fsim.2000.0269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045313211
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1006/jipa.1997.4703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048456558
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/0145-305x(83)90004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047245107
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/0742-8413(95)02033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041552794
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.dci.2007.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011413344
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.dci.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041601338
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.dci.2013.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035424601
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.dci.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218986
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.dci.2015.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006176148
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.fsi.2004.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026614242
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.fsi.2006.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029202621
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.fsi.2012.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015144420
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.fsi.2012.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025221405
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.fsi.2012.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028468016
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.fsi.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010708932
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.fsi.2016.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051947215
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.imbio.2005.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004023182
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.molimm.2006.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047494360
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.tibs.2015.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181596
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0044-8486(00)00418-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017503018
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1073/pnas.0308734101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024133934
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1074/jbc.m113.528885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026703501
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1093/nar/27.22.4436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019725071
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1111/j.0105-2896.2004.00115.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030996131
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1111/j.0105-2896.2004.00116.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026197535
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1111/j.1432-1033.1992.tb17313.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002029787
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1111/j.1744-7410.2003.tb00090.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018988517
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1190689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462462
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1155/2016/9032181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007989420
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1163/156854008x354993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034150110
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1163/20021975-99990240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034458232
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1182/blood-2010-11-320614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032316164
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1371/journal.pone.0040615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050771452
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1371/journal.pone.0108486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656216
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.3147/jsfp.27.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042967972
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.3147/jsfp.33.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719744
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.7717/peerj.2590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046436713
    209 rdf:type schema:CreativeWork
    210 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
    211 schema:name Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato, 108-8477, Konan, Tokyo, Japan
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...