Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Tadashi Tokai, Daisuke Shiode, Takeshi Sakai, Mari Yoda

ABSTRACT

Selectivity curves were obtained for 22 species of fish and squid from stock assessment research data for the East China Sea between 2001 and 2011, conducted using a cover net attached to the codend of a trawl net (Seikai National Fisheries Research Institute SS-RI-type trawl net). The trawl net codend was made of diamond mesh net with a legal minimum mesh opening size of 54 mm (mesh length of 66 mm). A cover net with a mesh opening of 18 mm (or 10.3 mm depending on the research year) was attached to the codend. For each of the 20 fish species and two squid species, we pooled data of hauls where body size for the whole catch was measured without subsampling to obtain the body size compositions of fish caught in both the codend and the cover net. The maximum likelihood method was performed for estimation of parameters in the logistic curve equation representing the codend selection curve. For 18 fish species (excluding Trichiurus japonicus and Muraenesox cinereus), we examined the relationship of the obtained selection parameters [length at 50% retention (l50) and selection range (SR) (= l75–l25)] to fish body shape. We demonstrated that, in fish species with a smaller ratio of body height/width to body size (i.e., more slender body type), there was a tendency for larger l50 and SR. Furthermore, by comparing the l50 of each fish species with reproductive parameters such as minimum length at maturity, we examined the sustainability of the resources based on the minimum mesh size regulation. More... »

PAGES

1-14

Journal

TITLE

Fisheries Science

ISSUE

N/A

VOLUME

N/A

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12562-018-1270-x

    DOI

    http://dx.doi.org/10.1007/s12562-018-1270-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109793934


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo University of Marine Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412785.d", 
              "name": [
                "Tokyo University of Marine Science and Technology, 108-8477, Minato, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tokai", 
            "givenName": "Tadashi", 
            "id": "sg:person.015714032601.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714032601.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Marine Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412785.d", 
              "name": [
                "Tokyo University of Marine Science and Technology, 108-8477, Minato, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiode", 
            "givenName": "Daisuke", 
            "id": "sg:person.016712500331.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712500331.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Taira-machi, 851-2213, Nagasaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakai", 
            "givenName": "Takeshi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Taira-machi, 851-2213, Nagasaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoda", 
            "givenName": "Mari", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1111/j.1444-2906.2006.01227.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004550958", 
              "https://doi.org/10.1111/j.1444-2906.2006.01227.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.60.347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005886070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12562-013-0687-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007108086", 
              "https://doi.org/10.1007/s12562-013-0687-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.81.429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009764619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.77.188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011153480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1046/j.1444-2906.2001.00355.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037017", 
              "https://doi.org/10.1046/j.1444-2906.2001.00355.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.71.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033937818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.71.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033937818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.76.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034630579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.65.441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034875595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.53.1191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035460904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fishres.2006.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039787899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-7836(01)00349-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044259021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.76.192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047930194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.76.192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047930194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.77.919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050280003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/suisan.31.848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051096451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-7836(96)00534-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052391951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmsc.1994.1030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054490188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0025315406013828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054813524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2331/fishsci.64.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091102284"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "Selectivity curves were obtained for 22 species of fish and squid from stock assessment research data for the East China Sea between 2001 and 2011, conducted using a cover net attached to the codend of a trawl net (Seikai National Fisheries Research Institute SS-RI-type trawl net). The trawl net codend was made of diamond mesh net with a legal minimum mesh opening size of 54 mm (mesh length of 66 mm). A cover net with a mesh opening of 18 mm (or 10.3 mm depending on the research year) was attached to the codend. For each of the 20 fish species and two squid species, we pooled data of hauls where body size for the whole catch was measured without subsampling to obtain the body size compositions of fish caught in both the codend and the cover net. The maximum likelihood method was performed for estimation of parameters in the logistic curve equation representing the codend selection curve. For 18 fish species (excluding Trichiurus japonicus and Muraenesox cinereus), we examined the relationship of the obtained selection parameters [length at 50% retention (l50) and selection range (SR) (= l75\u2013l25)] to fish body shape. We demonstrated that, in fish species with a smaller ratio of body height/width to body size (i.e., more slender body type), there was a tendency for larger l50 and SR. Furthermore, by comparing the l50 of each fish species with reproductive parameters such as minimum length at maturity, we examined the sustainability of the resources based on the minimum mesh size regulation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12562-018-1270-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5907379", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023112", 
            "issn": [
              "0919-9268", 
              "1444-2906"
            ], 
            "name": "Fisheries Science", 
            "type": "Periodical"
          }
        ], 
        "name": "Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6d3bd0bfff8621eae42567bde70f05bdfeed9d14b5ba38fa60f74e2112d96cd1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12562-018-1270-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109793934"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12562-018-1270-x", 
          "https://app.dimensions.ai/details/publication/pub.1109793934"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12562-018-1270-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12562-018-1270-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12562-018-1270-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12562-018-1270-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12562-018-1270-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      44 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12562-018-1270-x schema:about anzsrc-for:06
    2 anzsrc-for:0602
    3 schema:author N8e4bdbec0cbf467283177e09a97b7ea7
    4 schema:citation sg:pub.10.1007/s12562-013-0687-5
    5 sg:pub.10.1046/j.1444-2906.2001.00355.x
    6 sg:pub.10.1111/j.1444-2906.2006.01227.x
    7 https://doi.org/10.1006/jmsc.1994.1030
    8 https://doi.org/10.1016/j.fishres.2006.01.001
    9 https://doi.org/10.1016/s0165-7836(01)00349-6
    10 https://doi.org/10.1016/s0165-7836(96)00534-6
    11 https://doi.org/10.1017/s0025315406013828
    12 https://doi.org/10.2331/fishsci.64.191
    13 https://doi.org/10.2331/suisan.31.848
    14 https://doi.org/10.2331/suisan.53.1191
    15 https://doi.org/10.2331/suisan.60.347
    16 https://doi.org/10.2331/suisan.65.441
    17 https://doi.org/10.2331/suisan.71.44
    18 https://doi.org/10.2331/suisan.76.1
    19 https://doi.org/10.2331/suisan.76.192
    20 https://doi.org/10.2331/suisan.77.188
    21 https://doi.org/10.2331/suisan.77.919
    22 https://doi.org/10.2331/suisan.81.429
    23 schema:datePublished 2019-01
    24 schema:datePublishedReg 2019-01-01
    25 schema:description Selectivity curves were obtained for 22 species of fish and squid from stock assessment research data for the East China Sea between 2001 and 2011, conducted using a cover net attached to the codend of a trawl net (Seikai National Fisheries Research Institute SS-RI-type trawl net). The trawl net codend was made of diamond mesh net with a legal minimum mesh opening size of 54 mm (mesh length of 66 mm). A cover net with a mesh opening of 18 mm (or 10.3 mm depending on the research year) was attached to the codend. For each of the 20 fish species and two squid species, we pooled data of hauls where body size for the whole catch was measured without subsampling to obtain the body size compositions of fish caught in both the codend and the cover net. The maximum likelihood method was performed for estimation of parameters in the logistic curve equation representing the codend selection curve. For 18 fish species (excluding Trichiurus japonicus and Muraenesox cinereus), we examined the relationship of the obtained selection parameters [length at 50% retention (l50) and selection range (SR) (= l75–l25)] to fish body shape. We demonstrated that, in fish species with a smaller ratio of body height/width to body size (i.e., more slender body type), there was a tendency for larger l50 and SR. Furthermore, by comparing the l50 of each fish species with reproductive parameters such as minimum length at maturity, we examined the sustainability of the resources based on the minimum mesh size regulation.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf sg:journal.1023112
    30 schema:name Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size
    31 schema:pagination 1-14
    32 schema:productId N432ab1a6530248b59dd065cf02832644
    33 N6d850f22998740e394867bc285d10177
    34 Ne91ddf4f12674de2a97eab5113a261d9
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109793934
    36 https://doi.org/10.1007/s12562-018-1270-x
    37 schema:sdDatePublished 2019-04-11T02:32
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N1feb6b16a38f43b199e24fb84b1bd1c4
    40 schema:url https://link.springer.com/10.1007%2Fs12562-018-1270-x
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N1feb6b16a38f43b199e24fb84b1bd1c4 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N432ab1a6530248b59dd065cf02832644 schema:name doi
    47 schema:value 10.1007/s12562-018-1270-x
    48 rdf:type schema:PropertyValue
    49 N68650c933b0441cb92a9da87d7801cd2 schema:name Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Taira-machi, 851-2213, Nagasaki, Japan
    50 rdf:type schema:Organization
    51 N6d850f22998740e394867bc285d10177 schema:name dimensions_id
    52 schema:value pub.1109793934
    53 rdf:type schema:PropertyValue
    54 N7131302c5f524fd5a5be64e1b71a41db rdf:first sg:person.016712500331.58
    55 rdf:rest Na704178a69234c9fa60707fb68d041c4
    56 N852403b6e94b4bedbb41776fe806315f schema:affiliation N863e8bb9f0ad42f3a3dcf1c3500c719d
    57 schema:familyName Sakai
    58 schema:givenName Takeshi
    59 rdf:type schema:Person
    60 N863e8bb9f0ad42f3a3dcf1c3500c719d schema:name Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Taira-machi, 851-2213, Nagasaki, Japan
    61 rdf:type schema:Organization
    62 N8e4bdbec0cbf467283177e09a97b7ea7 rdf:first sg:person.015714032601.36
    63 rdf:rest N7131302c5f524fd5a5be64e1b71a41db
    64 Na704178a69234c9fa60707fb68d041c4 rdf:first N852403b6e94b4bedbb41776fe806315f
    65 rdf:rest Nc100822719a049b8a16c2aa6c5f8a0a6
    66 Nc100822719a049b8a16c2aa6c5f8a0a6 rdf:first Nd6c66f842a6949418e877be19f46f84f
    67 rdf:rest rdf:nil
    68 Nd6c66f842a6949418e877be19f46f84f schema:affiliation N68650c933b0441cb92a9da87d7801cd2
    69 schema:familyName Yoda
    70 schema:givenName Mari
    71 rdf:type schema:Person
    72 Ne91ddf4f12674de2a97eab5113a261d9 schema:name readcube_id
    73 schema:value 6d3bd0bfff8621eae42567bde70f05bdfeed9d14b5ba38fa60f74e2112d96cd1
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Biological Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Ecology
    80 rdf:type schema:DefinedTerm
    81 sg:grant.5907379 http://pending.schema.org/fundedItem sg:pub.10.1007/s12562-018-1270-x
    82 rdf:type schema:MonetaryGrant
    83 sg:journal.1023112 schema:issn 0919-9268
    84 1444-2906
    85 schema:name Fisheries Science
    86 rdf:type schema:Periodical
    87 sg:person.015714032601.36 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
    88 schema:familyName Tokai
    89 schema:givenName Tadashi
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714032601.36
    91 rdf:type schema:Person
    92 sg:person.016712500331.58 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
    93 schema:familyName Shiode
    94 schema:givenName Daisuke
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016712500331.58
    96 rdf:type schema:Person
    97 sg:pub.10.1007/s12562-013-0687-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108086
    98 https://doi.org/10.1007/s12562-013-0687-5
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1046/j.1444-2906.2001.00355.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037017
    101 https://doi.org/10.1046/j.1444-2906.2001.00355.x
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1111/j.1444-2906.2006.01227.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004550958
    104 https://doi.org/10.1111/j.1444-2906.2006.01227.x
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1006/jmsc.1994.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054490188
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.fishres.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787899
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0165-7836(01)00349-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044259021
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0165-7836(96)00534-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052391951
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1017/s0025315406013828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054813524
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.2331/fishsci.64.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091102284
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.2331/suisan.31.848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051096451
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.2331/suisan.53.1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035460904
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2331/suisan.60.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005886070
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.2331/suisan.65.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034875595
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.2331/suisan.71.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033937818
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.2331/suisan.76.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034630579
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.2331/suisan.76.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047930194
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.2331/suisan.77.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011153480
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.2331/suisan.77.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280003
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.2331/suisan.81.429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009764619
    137 rdf:type schema:CreativeWork
    138 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
    139 schema:name Tokyo University of Marine Science and Technology, 108-8477, Minato, Tokyo, Japan
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...